InterBase
Forms Guide

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It contains most of
the information from InterBase Previous Versions Documentation Corrections and In-
terBase Version 3.2 Documentation Corrections and a new index. For information on
features added since InterBase Version V3.0, consult the appropriate release notes.

Table Of Contents

Preface
Who Should Read This. ix
Using this Book X
Text Conventions xi
Syntax Conventions.iuiiniii xii
InterBase Documentation xiii
Introduction
OVEIVIEW . .« o ittt 1-1
The Forms System 1-3
The Forms Editor. 1-4
How to Approach Forms 1-5
The Sample Database, 1-6
Accessing the Sample Database 1-6
Invoking Fred. 1-7
Fred’s Top-level Menu Options, 1-8
About the Examplesin thisManual. 1-9
For More Information 1-10

Creating a Form

OVeTVIBW. . o .ot e 2-1
CreatingaForm 2-1
Navigatingina Form. 2-4
Editing Fields.o i 2-5
The Edit Type Tag Line. i, 2-7
The Reformat Option. 2-7
The Size Option e 2-7

-4

vi

The Exit Option.ottt e e e 2-8

Saving the Example Form. 2-10
For More Information i 2-11
Editing a Form
OV T VW . .« o ottt et e et e e e e e e 3-1
The Edit Tag Lineot e e 3-3
The Select Option e 3-4
The Move Option o e e e 3-4
The Add Optionottt e e 3-6
The Change Optiono vttt e e 3-11
The Reverse Option.ttt 3-12
The Delete Option e 3-13
The Save Optionot e 3-14
The Exit Option.o e e 3-15
For More Information i 3-16
Editing Subforms
OV T VIOW . .« . e e e e e e e 4-1
Selecting a Subform. e 4-3
The Change Option i e 4-4
The Characteristics Option.ttt 4-4
The Region Option. i 4-4
The Sub_item Option. i i i 4-5
The Size Optiont et 4-6
The Exit Option. e i 4-6
For More Information0 it 4-7

The Ski Directory Example: A Fred Tutorial

LT 4 1= 5-1
Starting the Tutorial 5-2
The Application Forms 5-3
The NEW_SKI_AREA Form. 5-3
The SKI_TRAILS Form.ttt e e 5-5

The NE_SKI_DIRForm i, 5-7

Creating the SKI_TRAILS Subform., 5-9
Completing the fred Session 5-11
Using the Forms in an Application. 5-12
For More Information 5-13

Using Forms with Qli

OVerview. 6-1
UsingFormsin Qli. 6-2
Invoking Formsin Qli 6-3
Invoking Forms Automatically. 6-3
Invoking Forms Explicitly. 6-4
Displaying Limited FieldsinaForm 6-5
Using Forms to Enter and Modify Data. 6-5
FormattingaFormin Qli 6-7
For More Information 6-8
Using Forms with GDML
OVeIVIEW. . o ottt 7-1
DisplayingaForm 7-2
Creatinga Window i 7-4
Deletinga Window. i 7-5
Using Attributes. o 7-6
The .State Attribute 7-6
The .Terminator Attribute i ... 7-8
The .Terminating_field Attribute................................ .. 7-9
Creating Menus ottt 7-10
Defining Static Menus. 7-10
Defining DynamicMenus i 7-12
Using Subforms in GDML. 7-13
The New England Ski Directory Application. 7-13
ErrorHandling 7-17
For More Information 7-18

vii

viii

Using Blobs with Forms

Forms Reference

OV VIEW . .« o ottt e et e e 9-1
Case_Menu Statement.ttt e e 9-2
DaSplay . .o e 9-5
For Form. 9-9
For Ttem e 9-12
For Menu e e e 9-14
Put _Jtem. .. e e 9-17

Platform Specific Notes

ApPOllo NOteS . . .o A-l
MoOUSE SUPPOTt. . . oottt e e e A-1
Editing Keys e A-2

SUN NoOLeS . . oo e A4

Keyboard Diagramso vttt e A-5

The Atlas Database

About the Atlas Database B-1

Sample Forms Programs

OV VIBW . .« o ittt et e e e C-1
Sample Program 1. C-2
Sample Program 2t C-5

Preface

This book contains information on the InterBase forms facility.

Who Should Read This

The audience for this book is anyone who wants to create an end-user interface that
uses forms for data display or input.

This book assumes that you have read the Getting Started with InterBase book provid-
ed with your documentation set.

Using this Book

Using this Book

This manual is organized in the following way:

Chapter One
Chapter Two

Chapter Three
Chapter Four
Chapter Five

Chapter Six
Chapter Seven

Chapter Eight
Chapter Nine

Appendix A
Appendix B

Appendix C

Index

Introduces forms and the forms editor, fred.

Describes creating forms based on existing relations
using fred.

Describes editing an existing form using fred.
Describes how to select and edit subforms in fred.

Presents a hands-on tutorial for creating the forms for
a complete application.

Discusses using forms in qli to store, retrieve, and
modify data interactively.

Discusses manipulating forms using GDML state-
ments.

Describes using blobs with forms.

Provides syntax and usage descriptions for all forms-
specific GDML statements.

Describes platform-specific implementation notes.

Describes the sample database provided with Inter-
Base.

Provides two additional sample programs that use
GDML statements to manipulate forms.

Text Conventions

Text Conventions

The following section explains how to interpret special type treatments within the text:

boldface

italic

fixed width font

UPPERCASE

Indicates a command, option, statement, or utility.
For example:

* Use the commit command to save your changes.
e Use the sort option to specify record return order.

* The case_menu statement displays a menu in the
forms window.

¢ Use gdef to extract a data definition.

Indicates chapter and manual titles; identifies file-
names and pathnames. Also used for emphasis, or to
introduce new terms. For example:

* See the introduction to SQL in the Programmer’s
Guide.

e Jusr/interbase/lock_header

® Subscripts in RSE references must be closed by
parentheses and separated by commas.

¢ (C permits only zero-based array subscript refer-
ences.

Indicates user-supplied values and example code:
e« Srun sys$system:iscinstall

e« add field population_1950 long

Indicates relation names and field names:

* Secure the RDB$SECURITY_CLASSES system
relation.

® Define a missing value of X for the
LATITUDE_COMPASS field.

Xi

Syntax Conventions

Syntax Conventions

This book uses the following syntax conventions:

{braces} Indicates an alternative item:

® option::=
{vertical |lhorizontal |transparent}

[brackets] Indicates an optional item:

* dbfield-expression[notlmissing

fixed width Indicates user-supplied values and example code:
® Srun sysSsystem:iscinstall

® add field population_1950 long

commalist Indicates that preceding word can be repeated to create
an expression of one or more words, with each word
pair separated by one comma and one or more spaces.

For example,
field_def-commalist
resolves to:
field def[,field _def[,field_def]l...]
italics Indicates syntax variable:

® create_blob blob-variable in
dbfield-expression

I Separates items in a list of choices.

U Indicates that parts of a program or statement have
been omitted.

Xii

InterBase Documentation

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following books:

Getting Started with InterBase (INT0032WW2179A) provides an overview of InterBase
components and interfaces.

Database Operations (INT0032WW2178D) describes how to use InterBase utilities to
maintain databases.

Data Definition Guide (INT0032WW2178F) describes how to create and modify
InterBase databases.

DDL Reference (INT0032WW2178E) describes the function and syntax for each of the
data definition language clauses and statements. It also lists the standard error
messages for gdef.

DSQL Programmer’s Guide (INT0032WW2179C) describes how to program with
DSQL, a capability for accepting or generating SQL statements at runtime.

Forms Guide (INT0O032WW2178A) describes how to create forms using the InterBase
forms editor, fred, and how to use forms in qli and GDML applications.

Programmer’s Guide (INT0032WW2178I) describes how to program with GDML, a
relational data manipulation language, and SQL, an industry standard language.

Programmer’s Reference (INT0032WW2178H) describes the function and syntax for
each of the GDML and InterBase supported SQL clauses and statements. It also
lists the standard error messages for gpre.

Qli Guide (INT0032WW2178C) describes the use of qli, the InterBase query language
interpreter that allows you to read to and write from the database using interactive
GDML or SQL statements.

Qli Reference (INT0032WW2178B) describes the function and syntax for each of the
data definition, GDML, and SQL clauses and statements that you can use in gli.

Sample Programs (INT0032WW2178G) contains sample programs that show the use
of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire InterBase Ver-
sion 3.0 documentation set.

In addition, platform-specific installation instructions are available for all supported
platforms.

xiii

Xiv

Chapter 1
Introduction

This chapter introduces InterBase forms and the interfaces you use to display and ma-
nipulate forms.

Overview

A successful database depends on the effective collection and retrieval of data. To sim-
plify both processes, InterBase provides forms, screen images used for the collection
and display of data.

The InterBase forms facility provides you with the tools for creating an end-user inter-
face to a database application. You can create forms that enable a user to view or enter
information from a database. The forms facility is comprised of:

* A forms editor (fred) that provides menu support for building forms.
* qli statements for manipulating existing forms and for using default forms.

* GDML statements for incorporating and manipulating forms and menus in GDML
applications.

Introduction 1-1

Overview

A form is a fill-in template for data. A form usually corresponds to a database relation.
Elements of a form are:

o Text
e Labels
e Fields

e Subforms
Form elements are described in the next chapter, Creating a Form.

1-2 Introduction

The Forms System

The Forms System

InterBase forms are built with a software layer named pyxis. Pyxis is used in turn to
create the interfaces to fred (the forms editor), qli, and end-user applications created
using GDML. The relationship between these components is illustrated in Figure 1-

1.

Figure 1-1. Forms System Architecture

fred

qli

User Applications

pyxis

InterBase

The following table describes the different ways of creating and using forms in an ap-

plication.

Table 1-1. Facilities for Using Forms

With this facility...

You can ...

fred Create, edit, and delete forms and sub-
forms with menu support. You cannot
store database values.

qli Store and retrieve database values.
Does not provide menu support.

GDML Create form-based applications. Edit,

delete, and store values in pre-defined
forms.

Introduction

1-3

The Forms Editor

The Forms Editor

The InterBase forms editor, known as fred, provides an interactive way to define
forms. It is characterized by the:

Use of menus. Rather than requiring you to learn a forms definition language,
fred provides menus that let you generate a new form or revise an existing form.
Automatic generation of forms. A single menu choice generates a new form.

Ease of editing forms to your application’s requirements. fred lets you add fields
to a form, move field labels and data input areas, and change the appearance of la-
bels and input areas.

Ease of generating forms that reference multiple relations. Menu choices let you
choose fields from another relation to include in the form.

Storage of forms in the same database as the relations they reference. When you

finish creating or editing a form, fred automatically stores the form in the data-
base (or discards it if you so desire).

Note

You cannot store data through fred. To enter values using a form
you must use qli, GDML or SQL.

The next chapter describes creating a form using fred.

14

Introduction

How to Approach Forms

How to Approach Forms

This manual provides several ways of learning forms and the fred interface. We sug-
gest one of the following:

e Learn by doing. Turn to Chapter 5, The Ski Directory Example: A Fred Tutorial,
and get to know fred by building forms following step-by-step instructions.

e Learn by example. Read through the chapters sequentially to get a complete look
at fred and forms.

Introduction 1-5

The Sample Database

The Sample Database

Interactive examples are used extensively in this manual to illustrate forms concepts.
The examples all refer to data stored in the InterBase sample database, atlas.gdb. For
information on atlas.gdb, refer to Appendix B, The Atlas Database.

Accessing the Sample Database

If you plan to try any of the examples in this manual, you must use the atlas.gdb data-
base. Copy the database to a local directory so that you can make changes without af-
fecting the original sample database. The location of the sample database file depends
on the operating system you are using:

1-6

VMS systems. Copy the sample database from interbase$ivp to a file in your direc-
tory:

$ copy 1interbaseS$ivp:atlas.gdb atlas.gdb

UNIX systems. Copy the sample database from /usr/interbase/examples/atlas.-
gdb to a file in your directory:

Q

% cp /usr/interbase/examples/atlas.gdb atlas.gdb

Apollo AEGIS systems. Copy the sample database from /interbase /examples/at-
las.gdb to a file in your directory:

% cpf /interbase/examples/atlas.gdb atlas.gdb

Introduction

Invoking Fred

Invoking Fred

To invoke fred, type the editor name, fred, followed by the name of a database:
% fred atlas.gdb

The database name can be specified as a full or relative pathname if it is not in the cur-
rent directory when you invoke fred.

Fred puts up a menu titled " Pick one, please” that lists the top level options:

Figure 1-2. The "Pick one, please” Menu.

Pick one, please
EDIT FORM
CREATE FORM
DELETE FORM
COMMIT
ROLLBACK

Exit Form Editor

Introduction 1-7

Fred's Top-level Menu Options

Fred’s Top-level Menu Options

The edit form option lets you edit an existing form. You can add or delete fields, re-
format the form, or save it as a new form. Editing a form is described in Chapter 3.

The create form option lets you create a new form, possibly based on an existing re-
lation. Creating a form is described in Chapter 2.

If you select delete form from the menu, fred pops up a menu listing all of the forms
in the current database. Select the name of the form you want to delete using the arrow
keys, and press Enter. The form is deleted from the database.

The commit option writes all operations since the last commit or rollback to the data-
base. Operations you perform in fred are not entered in the database until they are
committed.

For example, if you use the delete form option to remove a form, the form will no long-
er be displayed in the fred menu that lists forms, but it still exists in the database. If
you commit the changes the form is deleted.

The rollback option lets you undo changes to the database if they have not yet been
committed. For example, if you remove a form using the delete form option, the form
will no longer be displayed in the fred menu that lists forms, but it still exists in the
database. If you roll back the changes the form is restored.

1-8 Introduction

About the Examples in this Manual

About the Examples in this Manual

This guide uses interactive examples to illustrate concepts. Chapter 5 is a complete
tutorial providing instructions for building the forms for a New England Ski Directory
application. This application uses forms to display and accept data for ski areas in the
New England states. The application code is presented in Chapter 6.

All of the examples in this manual use data from the atlas.gdb database supplied with
your software.

Introduction 1-9

For More Information

For More Information

Refer to the Qli Reference for the syntax for:

e commit
e rollback

1-10 Introduction

Chapter 2
Creating a Form

This chapter describes how to create forms based on relations, and how to navigate in
a form.

Overview

This chapter describes how to create a form based on a relation in the atlas.gdb data-
base. Most concepts in this chapter are illustrated using an example.

The forms examples demonstrate creating a form based on the SKI_AREAS relation.

Creating a Form

To create a form:
1. Invoke fred for the atlas database if you have not already done so by typing:

% fred atlas.gdb
2. Select create form from the “Pick One, Please” menu.

Creating a Form 2-1

Overview

Fred now displays the “Select Relation” menu shown partially in Figure 2-1. This

menu lists all the relations from the atlas.gdb database you specified when you in-
voked fred.

3. Select the SKI_AREAS relation from the list using the arrow keys to move the se-

lection box, and press the Return key.

Figure 2-1. Select Relation Menu

BASEBALL_TEAMS
CITIES
CROSS_COUNTRY
MAYORS
POPULATIONS
PROVINCES
RIVERS
RIVER_STATES

[SKI_AREAS

STATES
TOURISM

Once you have chosen a relation and pressed the Return key, fred paints a default
form on the screen. A default form displays field names and input areas that corre-
spond to the field names of the source relation, and the top level tag line. Figure 2-2
shows the default form for the SKI_AREAS relation.

Figure 2-2. Elements in a Default Form

2-2

NAME OO 0.00:0.00:0.00:0:0.09:0.0.0.0.0.0.9.04
Label ——| TVYPE X
CITY XXXKXXKX KKK KL KKK KKKKKKKK
STATE XxxXX|—— Input area
Edit type: |EDIT REFORMAT SIZE Exit |—Trag line

Creating a Form

Overview

Default Form Elements

In the default form, fred automatically defines form fields to match the characteristics
of the database fields for the relation. The form fields consist of two parts:

1. Alabel, such as “STATE.” The label matches the database field name.

2. Aninput area, such as “XXXX.” The input area reflects the datatype of the data-
base field.

fred treats the label and the input area as separate objects. For example, if you choose
the “STATE?” field label as the object you want to manipulate, the input area “XXXX”
that follows is not be affected by operations on the “STATE” label.

Input Area

The input area accepts a field value in accordance with the datatype specified for the
field. Valid datatype representations in fred are:

* X for alphanumeric data

* 9 for fixed integer data, with or without scale
¢ F for single or double floating data

* D for date data

* An outlined box for blob data

Datatypes are fully described in the chapter on defining fields in the Data Definition
Guide.

Changing the forms and appearance of field labels and input areas is discussed in the
next chapter, Editing a Form.

The Tag Line

At the bottom of the form is the tag line. The tag line lists options for editing and ma-
nipulating the form. The tag line is updated to display operations you can perform on
the form. The tag line options are discussed later in this chapter.

Creating a Form 2-3

Navigating in a Form

Navigating in a Form

When defining a form using fred, you can be in one of two cursor modes:
e Navigation mode
¢ Edit mode

Navigation mode enables you to move from field to field within a form.
Edit mode enables you to modify the editable contents of a field within a form.

When you enter the forms editor you are by default in navigation mode. The arrow,
tab, delete, and return keys move the cursor from field to field within a form.

Note

If you are using InterBase on an Apollo, you can navigate in a form
using a mouse. Using a mouse with forms is described in Appendix

A, Apollo Specific Notes.

Practice using the cursor movement keys to move around the SKI_AREAS form.

2-4 Creating a Form

Editing Fields

To enter edit mode while navigating a form, move to a field and press an edit key. The
edit keys are marked in bold typeface in the following table. The other keys control cur-
sor movement and edit functions within a field.

Figure 2-3. Edit Keys Table

Editing Fields

. I Key on all other
Function | Description Key on Apollo platforms
Edit Toggles between edit EDIT Ctrl-G
mode and navigation
modes

Insert/ Toggles between insert INS Ctri-A

overstrike | and overstrike modes

Erase Deletes the contents of LINE DEL Ctrl-U
entire field

Insert Inserts any printable Any char Any char
character into field

Right Moves cursor one char- Right arrow Right arrow
acter to right

Left Moves cursor one char- Left arrow Left arrow
acter to left

Delete Deletes character to left BACKSPACE Delete
of cursor

Delete Deletes the current char- | CHAR DEL Ctrl-F

next char- | acter

acter

Go to start | Moves cursor to start of Left Bar Arrow | Ctrl-H
field

Go to end | Moves cursor to end of Right Bar Ctrl-E
field Arrow

Once a field is selected for editing, if the first key you press is the erase key or the insert
key (any printable character) the contents of the field are deleted and new characters
are inserted. However, if the first key you press is the edit key or the insert/overstrike

Creating a Form

2-5

Editing Fields

key, the existing contents remain and new characters are inserted. If you try typing
characters into a field that is full and cannot accept more characters, the bell rings to
warn you that characters will be lost.

2-6 Creating a Form

The Edit Type Tag Line

The Edit Type Tag Line

When you open a form in fred, whether it is newly created or opened for editing, your
first options for altering the form are presented in the Edit type tag line. The top level
options on the tag line are:

o Edit
* Reformat
e Size
e Exit

The edit option is discussed in the next chapter.

The Reformat Option

The reformat option is only useful if you are editing a form, not creating a new form.
Reformatting restores the default characteristics of that form.

Caution

Take caution when using this option; it undoes all of your format-
ting changes and reformats the form so that it looks like a default
form. A default form has vertical orientation, right justification for
labels, and left justification for input areas. To avoid losing work
if you reformat accidentally, save your work frequently. Saving a
form is described in the section The Exit Option.

The Size Option

The size option on the Edit type tag line allows you to change the width and height of
a form. When you select size from the Edit menu, fred puts up a subform that displays
the current dimensions of the form, as shown in Figure 2-4.

Figure 2-4. Resizing the SKI_AREAS Form

Form S1ize

WIDTH m HEIGHT

Creating a Form 2-7

The Edit Type Tag Line

To change the width or height of a form, move the cursor to the appropriate box using
the TAB or cursor keys. Type in a new value and press Return. To display the form in
a box, set the value in the outline_form box to Y. Press Enter when you have completed
your changes.

If you choose a size that is too small to display the entire form, the form becomes scrol-
lable. If there is one element too wide for the form, fred truncates the display.

The Exit Option

If you select Exit from the Edit type tag line, the tag line changes to Retention Options
and displays the following options:

e Save

¢ Rename

e Discard

e External file

These options are described below.

The save option prepares to write the form to the database. If this is the first time you
have saved this form from the top level tag line, you are prompted to supply a form
name. The form name can be up to 31 characters and can include any printable char-
acter.

If you are editing an existing form, fred does not prompt you for a filename, but over-
writes the current version of the form stored in the database and returns you to the
“Pick one, please” menu.

Note

Changes made in fred are not written to the database until you ex-
plicitly commit the changes by selecting commit from the “Pick one,
please” menu, or you exit fred, which executes a commit. Even af-
ter you save a form, the changes can be undone by selecting the
rollback command from the “Pick one, please” menu. The commit
and rollback operations are described in Chapter 1.

Renaming a Form

The rename option is only available if you are editing a form, not creating a new form.
If you do not want to overwrite the original form, use the rename option to assign a
new name to a form. You can then save your changes to this new form.

2-8 Creating a Form

The Edit Type Tag Line

Discarding a Form

If you do not want to save the new form you have created, or the changes you have
made to an existing form, select discard from the Retention Options tag line.

If you are in a form and you do not want to make any changes, use the discard option
to close the form.

Saving a Form to an External File

The external file option writes the form to an operating system file that you specify.
fred prompts you for a filename. Assign a filename or a full pathname, following the
conventions for your operating system. Press Enter to assign the filename. fred dis-
plays the “Pick one, please” menu so that you can commit or rollback your changes, or
select another operation.

Creating a Form 2-9

Saving the Example Form

Saving the Example Form

To save the SKI_AREAS form, follow these steps:

1. Select exit from the Edit Type tag line.

2. Select save from the Exit tag line. fred prompts you to enter a form name.
3. Enter the name SKI_AREAS. fred displays the “Pick one, please” menu.
4. Select commit from the menu.

The SKI_AREAS form is now stored as part of the atlas database. Chapter 3 describes
editing existing forms.

2-10 Creating a Form

For More Information

For More Information

For more information about:

* Keyboard commands, refer to Appendix A, Platform Specific Notes for machine-
specific keyboard variations.

¢ Datatypes, refer to the chapter on field attributes in the Data Definition Guide.
* The atlas.gdb database, refer to Appendix B, The Atlas Database.

Creating a Form 2-11

2-12

Chapter 3
Editing a Form

This chapter describes how to edit the contents and layout of an existing form.

Overview

The following sections describe customizing an existing form. The example form is a
form provided with the atlas database and is based on the STATES relation.
To edit the STATES form:

1. Select edit form from the “Pick one, please” menu. fred displays the list of exist-
ing forms.

Select STATES from the list of forms. The STATES form is displayed.

3. The cursor is positioned on the tag line at the bottom of the form. Using the arrow
keys, move to the edit option on the Edit type tag line.

4. Press Enter to select the edit option. fred prompts you to select a form element,
as shown in Figure 3-1.

Editing a Form 3-1

Overview

Figure 3-1. The STATES Form

STATE XXXX

STATE_NAME):9.:9,9.9.9:9.9,0:9:9,0,0:9:9.0.0:9:9.0.4
AREA 9999999999
STATEHOOD DDDDDDDDDD

CAPITAL):9.:9.:0.9:9:9:9.9.0:0:0:9:0:9.0:9:0:9.9:¢

Edit type: EDIT REFORMAT SIZE Exit

Editing a Form

The Edit Tag Line

The Edit Tag Line

All editing operations are performed using options from the tag line displayed at the
bottom of the form. The Edit type tag line has these options:

e Edit

* Reformat

e Size

e Exit

To edit a form, use the arrow keys to move the selection box to the Edit option and press

Return. Press Enter to select the STATE field. The tag line changes to display the fol-
lowing options for editing a form:

This option... | allows you to...

select select an object for editing.

move reposition form elements.

add add text, fields, or subforms to a form.

change modify label text or input field characteristics.

delete delete elements from a form.

reverse change the display characteristics of input fields
and labels.

save save a form.

exit exit to the top level tag line.

Each of the editing operations is described in the following sections.

Editing a Form 3-3

The Edit Tag Line

The Select Option

To select elements in the form move the cursor to the select option and press Return.
You are now in navigation mode, as described in Chapter 2. Move to the STATEHOOD
field and press Return to select the field.

Note

Apollo users can use the mouse to select menu options and ele-
ments. Other Apollo platform-specific variations are described in
Appendix A.

The Move Option

The move options enable you to move all, or some, of the elements in your form. Move
the cursor to move and press Enter. The tag line changes to display options for reor-
dering the form. These options and the operations they perform are listed in the fol-
lowing table.

This option... | allows you to...
item move the selected field or label.
some select multiple items by selecting one, pressing

Return, and repeating until the desired group is
selected. Press Enter when done selecting.
(Pressing Return also deselects a selected item.)

most select many form elements quickly. All elements
are selected. To deselect, move cursor to an item
and press Return. Repeat until only the group
you want to move is selected and then press
Enter. (Pressing Return also reselects a dese-
lected item.)

all move all elements in a form.

exit return to the Edit tag line.

3-4 Editing a Form

The Edit Tag Line

Once you have selected the item or items you want to move, you can move them in the
following ways:

Enter a number, then press an arrow key to move the object that number of spaces
in the direction indicated.

Press any cursor movement key to move an object or group of objects in the direc-
tion indicated. Continue to press the key until the object is positioned where you
would like it.

For example, to reformat the STATES form so the STATE label and field are more
prominent, do the following:

1.

2.
3.
4

Select edit from the tag line.
Move the cursor to the STATE label and press Enter.
Select move from the Edit tag line and press Enter.

Select most from the Move tag line. All the elements are selected and displayed
in reverse video.

Move the cursor to the STATE label field and press the Return key. The field is
deselected.

Move the cursor to the STATE input field and press Return. The input field is
deselected.

Press the Enter key.
Enter 10, then press the right arrow key.

The STATES form is now formatted as shown in Figure 3-2.

Figure 3-2. Moving Fields in the STATES Form

STATE XXXX

STATE_NAME KXXXXXXXXXXKXXKXKXXXXX
AREA 9999999999
STATEHOOD DDDDDDDDDD

CAPITAL XX XXX XXXXX XX XXX XXKXXX

Edit options:SELECT MOVE ADD CHANGE DELETE
REVERSE SAVE Exit

Note

As soon as you press the Enter key, the tag line reverts to the Edit
tag line.

Editing a Form 3-5

The Edit Tag Line

The Add Option

The add option enables you to add text, a form field that corresponds to a program
field, or a database field from another relation. When you select add from the Edit tag
line, the tag line changes to display the following add options:

o Text

e Field

e Database fields

¢ Repeating sub-form

¢ Exit

Each of these options is described in this section.

Adding Text to a Form
To add text to a form, select text from the Add tag line. The tag line prompts you to:

Enter text, terminate with a <cr>

For example, to add explanatory text to the STATES form, follow these steps:
1. Select text from the Add tag line.

2. Move the cursor to the right of the State input field using the arrow keys to posi-
tion the cursor.

Note

If you use the space bar to position the cursor, the spaces are in-
cluded as part of the text you add.

3. Type: (Enter 2-letter state code)
4. Press the Return key.

Figure 3-3 displays the updated STATES form.

3-6 Editing a Form

The Edit Tag Line

Figure 3-3. Adding Text to a Form

STATE_NAME
AREA
STATEHOOD
CAPITAL

SAVE Exit

STATE XXXX (Enter 2-letter state code)

):9:0:0:9:9.9.:9:9:0:9:0.9:9:9:9:9.0.0,0:¢
9999999999
DDDDDDDDDD
):9.:9:0:0:9.9:9.9:9:9.9.9:9:9:9.:9.0:0:0.¢

Edit options:SELECT MOVE ADD CHANGE DELETE REVERSE

Adding External Fields to a Form

The Add menu also enables you to add a field that is not part of the database. For
example, suppose you have information about each state stored in an external file; you
can add that information to the STATES form using the field option from the Add tag

line.

When adding a non-database field to a form, you must supply field attributes such as
datatype and length. fred supplies a form through which you can enter the field char-

acteristics.

For example, to add a GUIDEBOOK field to the STATES form:

1. Select add from the Edit tag line.
2. Select field from the Add tag line.

3. fred displays the field definition form, shown in Figure 3-4.
Figure 3-4. The Field Definition Form

FIELD_NAME [

FILL_STRING [

EDIT_STRING |

UPCASE
WIDTH
ALIGN_RIGHT

DATATYPE
SCALE
LENGTH

Editing a Form

3-7

The Edit Tag Line

You are required to supply a field name and datatype; the remaining fields are
optional. Field characteristics are described in the section on field attributes in the
Data Definition Guide. The following table briefly describes the optional fields.

Table 3-1. Options for Defining Non-Database Fields

This option... | allows you to...
edit_string describe the format of the string when it is dis-
played.

For example, an edit string of (xxx)bxxx-xxxx
describes how a phone number should be printed,
where x represents a numeric value and b repre-
sents a space.

fill_string specify what characters appear by default in the
field when no value is explicitly entered.

upcase direct InterBase to translate all input to upper-
case. For example, change Ma to MA. The default
is to accept input exactly as given.

width specify how much of the field should be displayed.
Many datatypes, such as long, have default
widths.

For example, the AREA field in the STATES form
can accept 10 numeric characters. Although it is
not practical in this example, you could specify
the field to display only four characters.

align_right right-justify the display of data. This is especially
helpful for displaying numeric data. While
numeric fields are right-justified by default, you
may have numeric data in character fields. For
example, suppose you want travel expenses stored
in the character form 104.12, 2,193.21, 17.99.
Unless you specify align-right they will be left-

justified:

Default Align-right
104.12 104.12
2193.21 2193.21
17.99 17.99

3-8 Editing a Form

The Edit Tag Line

Table 3-1. Options for Defining Non-Database Fields continued

This option... | allows you to...

datatype, assign datatype attributes for the field.

scale, Datatypes, scale and length are described in the
and length Data Definition Guide.

Adding Database Fields to a Form

You may want a form to reference other relations involved in a query. You can do this
by adding fields from other relations. Use this feature if you plan to use a form to
express a join between two or more relations in your database. Expressing joins using
forms is discussed in Chapter 6, Using Forms with Qli.

To add a field from the CITIES relation to the STATES form, follow these steps:

1. Select add from the Edit menu.

2. Select database fields from the Add tag line. A menu pops up listing all of the
available relations.

3. Select the CITIES relation. A menu pops up listing the fields. See Figure 3-4.

4. Select the POPULATION field by moving the cursor to POPULATION, pressing
<CR>, then pressing Enter. This selection sequence makes it possible for you to
select multiple fields to add. In this case, however, you simply want to select POP-
ULATION.

Figure 3-5 displays the selected database fields. v
Figure 3-5. Selecting a Database Field

Select Relation____|
Select Field(s)
CITY
POPULATIO CcITY
POPULATION_DE< STATE
PROVINCES POPULATION
RIVERS
RIVER_STAT LATITUDE
STATES LONGITUDE
LATITUDE DEGREE
None of the ab S

Editing a Form 3-9

The Edit Tag Line

The POPULATION field is added to the bottom of the STATES form. Use the move
item command to align the POPULATION field with the other fields on the form.
Figure 3-6 shows the STATES form with the POPULATION field added.

Figure 3-6. Adding the POPULATION Field to the STATES Form

STATE XXXX (Enter 2-letter state code)
STATE_NAME);0:9:9:9:9.0.9:9:0:9:9.9.0:0:0.9.:9:0:9.9.:9:9.9.9.0.0.9.9,9.9:4
AREA 9999999999
STATEHOOD DDDDDDDDDD
CAPITAL):0,0,9,9:9:9:9.0.9:9.9.9.9.9.9:9:0:0:9:0.9.9.9:9.9.0.0.0.:0.0:4

POPULATION 9999999999

Edit options:SELECT MOVE ADD CHANGE DELETE REVERSE
SAVE Exit

When you use this form in gli or in a program, a value for the POPULATION field does
not show up unless the record selection expression includes a join over the STATE field
that searches for a city equal to the capital city. For an example of how to refer to the
field of a second relation in qgli, refer to Chapter 6 of this manual.

Adding Repeating Subforms

Forms use subforms to deal with repeating groups. Subforms, as the name implies,
are forms within a form. They are useful for entering or retrieving data that has a one-
to-many relationship.

For example, if you modify the STATES form to include information about ski areas in
a specified state, you must either expand the form greatly to accommodate all of the
ski area data, or display the ski area data more efficiently, using a subform.

A subform can be scrolled independently within the form, so that you can create a dis-
play window showing a specified amount of data at one time.

To create the subform described in the previous paragraph, follow these steps:
1. Select add from the Edit tag line.

2. Select repeating subform from the Add tag line. A menu pops up listing forms
in the database.

3. Select SKI_AREAS from the list.
The SKI_AREAS subform is added to the STATES form, as shown in Figure 3-7.

3-10 Editing a Form

The Edit Tag Line

Figure 3-7. Adding the SKI_AREAS Subform to the STATES Form

STATE XXXX (Enter Uppercase only)
STATE_NAME);9:0:9.:0:0.:0,9.0,9.0.9.9.:9:0:9.9:9.9:9:¢
AREA 9999999999
STATEHOOD DDDDDDDDDD
CAPITAL)9:0,0.0:0.9,9.:9,9.9.9.9.9:0:0.0:9.0.9:¢
POPULATION 9999999999
SKI_AREAS

NAME KXXXKXXXXXXXXXXXXXXXX
TYPE X

CITY):0:9.9.9:9:9.9,0:9.9.9.9.9:0.9:9.0.0,0:¢
STATE XXXX

Edit options:SELECT MOVE ADD CHANGE DELETE REVERSE
SAVE Exit

Editing subforms is described in the next chapter.

The Change Option

The change option lets you change label text, explanatory text, or the characteristics
of an input area. The change options depend on what form element is selected. For
example, if you select a label or explanatory text, then select change from the Edit tag
line, you are prompted to:

Enter replacement text, terminate with <CR>

If you select a field, then select change from the Edit tag line, a new tag line is dis-
played with these options:

This option... allows you to...

characteristics edit the defining properties of afield, such as the
datatype and display width.

enumerations specify or edit a list of acceptable values for the
field.
exit return to the Edit tag line.

Editing a Form 3-11

The Edit Tag Line

The characteristics menu allows you to edit the properties of a field. To invoke the
menu, select a field, then select characteristics from the Change tag line. Fred dis-
plays the menu shown in Figure 3-8.

Figure 3-8. The Characteristics Menu

FIELD NAME NAME
EDIT_STRING X(25)

FILL_STRING):0:0:0:0:0.0:0:0.9.0.0.0.9.0.0:0.0:9:0¢

UPCASE DATATYPE VARYING
WIDTH 25 SCALE

ALIGN_RIGHT N LENGTH 27

The attributes on the Characteristics menu are described earlier in this chapter, in the
section Adding External Fields to a Form.

The enumerations option limits values for a field to those you specify. In order to
limit the states to those in New England, you can specify an enumerated list of states
that define the valid domain for the STATE field.

To limit the field:

1. Select the STATE field.

2. Select change from the Edit option tag line.

3. Select enumerations from the Change tag line. Fred displays a form in which
you can enter the valid values for the field.

4. Enter CT, NH, MA, ME, RI, and VT in the values input area.
5. Press Enter.

The Reverse Option

The reverse option lets you change the display of field labels and input areas. When
you select reverse from the Edit tag line, the behavior differs, depending on what is
selected.

If text is selected, the reverse option toggles the video display between white text on
a black background and black text on a white background.

3-12 Editing a Form

The Edit Tag Line

If an input area is selected when you choose the reverse option, the tag line changes
to display the following options:

This option... allows you to...

invert toggle the normal display between
black text on a white background and
white text on a black background.

reverse on display updatable fields in reverse
update video. This is the default behavior.
normal remove any distinction between updat-

able and non-updatable input areas.

exit return to the Edit tag line.

Note

The result of the invert operation is immediately visible to you in
fred. The reverse and normal cases are not apparent until you
use the form in qli or in a program.

The Delete Option

The delete option on the Edit tag line enables you to delete elements from a form.

Since the STATES form has several fields that are not relevant to the example, follow
these steps to delete extraneous fields:

1.

SIS

Move the cursor to the AREA label and press Enter.

Select delete from the tag line. The AREA label disappears.
Move the cursor to the AREA field and press Enter.

Select delete from the tag line.

Repeat these steps to delete the STATEHOOD, CAPITAL, and POPULATION la-
bels and fields.

The STATES form should now look as it appears in Figure 3-9.

Editing a Form 3-13

The Edit Tag Line

Figure 3-9. Revising the STATES form

STATE XXXX (Enter 2-letter state code)

STATE_NAME XXXXXXXXXKKXXKKKXXXKKXX
SKI_AREAS
NAME):0:9:9:9.0.9.9:9:9,9:9:0.0.0.0:6:0:0:0’4
TYPE X
CITY 0:9.0:09.9.9.9.9.9.9:9:9.9:9.:9.0:0:0:0:¢
STATE XXXX

Retention options: SAVE RENAME DISCARD
EXTERNAL FILE

The Save Option

The save option on the Edit tag line allows you to save a form intermittently without
going to the top level tag line. When you select the save option, fred prompts you for
a form name. The form name can be up to 31 characters in length.

To assign a name to the form created in this chapter, enter the name STATE_SKI.

3-14 Editing a Form

The Edit Tag Line

The Exit Option

When you are done editing a form, select exit from the Edit tag line. The tag line
changes to the Edit type tag line:

Figure 3-10. Exiting Edit Mode

STATE XXXX (Enter 2-letter state code)

STATE_NAME):0:0:9:9.9.9:9:9:9:9.9.9.0:9.:9.9.0,0,0:¢
SKI_AREAS
NAME KXRXXXXKXXXXXXXKXXXXXXX
TYPE X
CITY KXXX XXX XXX XXXXKXXXXXX
STATE XXXX

Edit options:SELECT MOVE ADD CHANGE DELETE
REVERSE SAVE Exit

The exit options are described in Chapter 2, in the section, The Exit Option.

The STATE_SKI form is now complete. Follow these steps to exit from the
STATE_SKI form:

1. Select save from the Exit options tag line.

2. Select commit from the "Pick one, please” menu.

3. Select exit form editor to end the fred session.

Editing a Form 3-15

For More Information

For More Information

For more information on:
* Writing a record selection expression that joins relations, see the Qi Guide.

* Datatypes, refer to the section on field attributes in the Data Definition Guide.
* Creating and using external relations, see the Programmer’s Guide.
e Editing Subforms, see Chapter 4.

3-16 Editing a Form

Chapter 4
Editing Subforms

This chapter describes editing the content and layout of a subform.

Overview

The following sections describe editing the SKI_AREAS subform in the STATE_SKI
form. Creating the SKI_AREAS subform and adding the subform to the STATE_SKI
form were described in the previous chapter.

To invoke the STATE_SKI form, defined in Chapter 3:

1. Move the cursor to the Edit form option on the “Pick one, please” menu, and press
Enter. fred displays a list of existing forms in the active database.

9. Select STATE_SKI from the list of relations. fred displays the form shown in
Figure 4-1.

Figure 4-1 shows the STATE_SKI form with the SKI_AREAS subform from the Chap-
ter 3 example.

Editing Subforms 4-1

Overview

Figure 4-1. STATE_SKI form with SKI_AREAS Subform

STATE XXXX (Enter 2-letter state code)
STATE_NAME):9:9:9:9:9.9.9:9:9.9:9.9.9:9.9.0:0.0.0:4
SKI_AREAS
NAME :9:9.0.9:9.9:9:9.9.9:9:9.9:9.0:0:0.:9.0.4
TYPE - X
CITY XXX XXXXXXXKXXXXXKXXXXX
STATE XXXX

Edit options:SELECT MOVE ADD CHANGE DELETE
REVERSE SAVE Exit

Editing Subforms

Selecting a Subform

Selecting a Subform

To select the SKI_AREAS subform:
1. Select edit from the Edit type tag line.

2. Move the cursor to the subform to the right of the SKI_AREAS label and press En-
ter. The SKI_AREAS subform is selected.

3. Select change from the Edit tag line. The tag line changes to the Change tag line

All changes to the subform are made using the options on the Change tag line.

Note

Making changes to a subform does not affect the original form from
which the subform is created. Thus, if you edit the SKI_AREAS sub-
form in the STATE_SKI form, the changes you make are not reflect-
ed in the SKI_AREAS form in the database.

If you want to use the same edited subform in more than one form, edit the original
subform, delete the subform in the STATE_SKI form, and add the newly modified sub-
form.

Editing Subforms 4-3

The Change Option

The Change Option

The Change options apply to the subform when the subform is selected. They are:

¢ Characteristics

* Region

e Sub_item
* Size

¢ Exit

The Characteristics Option

When you select the characteristics option from the Change tag line, a menu prompts
you to rename the subform. To rename a subform:

¢ Type anew name and press Enter to change the name, or

® Press Enter to close the menu and keep the existing name

The Region Option

The region option lets you change the size of the subform. When you select region
from the Change tag line, fred displays a Form Size menu, as shown in Figure 4-2.

The region determines how many instances of the subform are displayed on the form.
For example, if the height of a subform is 6 and you set a region size to have a height
of 24, you could have four instances of the subform displayed at once.

4-4 Editing Subforms

The Change Option

Figure 4-2. The Form Slze Menu

STATE XXXX (Enter Uppercase only)
STATE_NAME):0.0.0.:0:0.0.0.:0.0:0.0.0.0.0.0.0.0.0:0.4
AREA 9999999999
STATEHOOR iniaiaiaiaininiaiatal
CAPITA] Form S 1z e
CAPITO]
WIDTH 34 HEIGHT 15
POPULATION
SKI_AREA{ OUTLINE_FORM Y

NAME AX XXX XXX XXX XX XXXXXXX
TYPE X

CITY XXX XX XXX XXX XXX XXKXXXX
STATE XXXX

Edit options:SELECT MOVE ADD CHANGE DELETE REVERSE
SAVE Exit

To change the size of the subform, use the arrow keys to select a value field in the Form
Size menu and change the value. Press Enter to close the menu. Fred redisplays the
form, changing the subform size as specified. The outline form option dictates whether
the subform is outlined or not.

The Sub_item Option

The sub_item option lets you select items in the subform. When you select sub_item

from the Change tag line, the tag line prompts you to select an item. You select fields
or labels within the subform in the same way you select elements in a form. Move the
cursor to the element you wish to select and press the Enter key.

Once a subform item is selected, you can perform all form operations on that item such
as deleting or editing the item.

Once you have selected sub_item, you get a menu that applies only to the elements of
the subform. You must exit from this menu to get back to a menu that affects the form.

For example, if you edit the NAME label on the SKI_AREAS subform, and then select
change from the Edit tag line, instead of getting options for changing the size or char-
acteristics of the subform, you are prompted to enter new text for the NAME label. To

Editing Subforms 4-5

The Change Option

select the subform, you must select exit from the Edit tag line. Now when you select
change, fred displays the options for editing the SKI_AREAS subform.

The Size Option

When a subform is selected, the size option from the Change tag line affects the display
of the contents of the subform. For example:

1. With the SKI_AREAS subform selected, select size from the Change tag line. A
Form Size menu similar to the one used for resizing the whole subform appears.

Select the field next to height and type 5 for the height value.
3. Press Enter. The subform is redisplayed so that only the NAME field is visible.

Select size again and change the height value to 10 to redisplay the entire contents
of the subform.

The Exit Option

Selecting exit from the Change tag line returns you to the Edit options tag line.

4-6 Editing Subforms

For More Information

For More Information

For more information on using subforms in applications, refer to Chapter 7.

Editing Subforms 4-7

48

Chapter 5
The Ski Directory Example:
A Fred Tutorial

This chapter describes how to build the forms for an end-user application.

Overview

The following sections provide step-by-step instructions you can use to create the forms
for an application that displays and accepts information for ski areas in New England.
The application consists of the following:

¢ Three forms based on relations in the atlas.gdb database.
* GDML code to display the forms and insert values into the database.

The forms are created in this chapter. The code is presented in Chapter 7, Using Forms
with GDML.

The Ski Directory Example: A Fred Tutorial 5-1

Starting the Tutorial

Starting the Tutorial

To begin the tutorial, you should have InterBase installed and loaded. You should
have a copy of the sample database, atlas.gdb, available. For information on accessing
atlas.gdb, refer to Chapter 1 of this book.

You should also be familiar with basic fred operations. For information on navigating
and editing in a form, refer to Chapter 2 of this book.

5-2 The Ski Directory Example: A Fred Tutorial

The Application Forms

The Application Forms

This section describes how to edit three forms that serve as the basis for the New
England Ski Directory application. The forms do the following:

e NEW_SKI_AREA accepts information about ski areas.
e SKI _TRAILS is used as a subform of NE_SKI_DIR.
* NE_SKI_DIR structures the display of information for the application.

The NEW_SKI_AREA Form

This section describes creating the NEW_SKI_AREA form, based on the SKI_AREAS
relation in the atlas.gdb database.
To begin the tutorial, invoke fred for atlas.gdb, as follows:

% fred atlas.gdb

To create the NEW_SKI_AREA form:

1. Move the cursor to the create form option on the “Pick one, please” menu, and
press Enter. Fred displays a list of relations in the atlas.gdb database.

2. Select SKI_AREAS from the list of relations. Fred displays the form shown in

Figure 5-1.
Figure 5-1. The NEW_SKI|_AREA form
NAME):0:0:6:0:0:0:0.0:0:0::0:0:0:0.0:0:0:0:¢
TYPE X
CITY XKXXXXXXXXXXXXXXKKXKX
STATE XXXX
Edit type: EDIT REFORMAT SIZE Exit

The NEW_SKI_AREA form is for entering information about ski areas into the data-
base. To make the form more useful, reformatting the form and adding instructions at
the top of the form, follow these steps:

1. Select edit from the Edit type tag line at the bottom of the form.
2. Select any field in order to invoke the Edit options tag line.

The Ski Directory Example: A Fred Tutorial 5-3

The Application Forms

3. Select move from the Edit options tag line.
Select all from the Move options tag line.

Press the down arrow four times to move all of the form elements down four spac-
es.

Press Enter.
Now select the field next to NAME .
Select add from the Edit options tag line.

© ® 3

Select text from the Add options tag line.

10. Use the right arrow key to move the cursor to the right side of the field, type ADD
NEW SKI AREA and press Return.

11. Select the text.
12. Select move from the Edit type tag line.
13. Select item from the Move options tag line.

14. Use the arrow keys to move the new label to the top and center of the form. The
form should look as shown in Figure 5-2.

Figure 5-2. Adding a Header to the Form

ADD NEW SKI AREA

NAME):0:9:0:9.9:9.9.0.9:9:9:9.:9:0.0,0:0:0.0.4
TYPE X

CITY):0:9.9.9.9:9.9:9.9.0:9.:9.0:9.:9.0,9.9.¢
STATE XXXX

Edit type: EDIT REFORMAT SIZE Exit

Use the steps described above to append the following text to the TYPE field:
(N = Nordic, A = Alpine, B = Both)

The form should now look as shown in Figure 5-3.

5-4 The Ski Directory Example: A Fred Tutorial

The Application Forms

Figure 5-3. The NEW_SKI_AREA Form

ADD NEW SKI AREA

NAME XXXXKKXXKKXKXKKKKKXKK

TYPE X (N = Nordic, A = Alpine, B = Both)
CITY PO0:0.0.0:0.00.0106010006004

STATE XXXX

Edit type: EDIT REFORMAT SIZE Exit

Now the form has greater significance to an end-user who encounters the form as part
of the Ski Directory application. Follow these steps to name and save the form:

1. Select any field or label and press Enter.

2. Select exit from the Edit options tag line.
3. Select exit from the Edit type tag line.
4

Select save from the Retention options tag line. fred prompts you to enter a name
for the form.

Type in NEW_SKI_AREA and press Return.

Select commit from the “Pick one, please” menu.

o o

The SKI_TRAILS Form

This section gives step-by-step instructions for creating the SKI_TRAILS form. The
form is based on the SKI_AREAS relation in the atlas.gdb database. The subform is
used to display information about existing ski areas within the NE_SKI_DIR form.

To create the SKI_TRAILS form:

1. Move the cursor to the create form option on the “Pick one, please” menu, and
press Enter. fred displays a list of relations in the atlas.gdb database.

2. Select SKI_AREAS from the list of relations. fred displays the form shown in
Figure 5-1.

The Ski Directory Example: A Fred Tutorial 5-5

The Application Forms

The SKI_TRAILS form is for displaying the information existing in the database about
ski areas. For this application, you don’t need the STATE label and field, so you can
delete them, following these steps:

1. Select edit from the Edit type tag line at the bottom of the form.
2. Move the cursor to the STATE field label and press Enter.

3. Select delete from the Edit options tag line.

4. Repeat the previous three steps to delete the STATE input field.

The next step is formatting the SKI_TRAILS form so that it fits suitably within the
NE_SKI_DIR form. The labels for the SKI_TRAILS form should be removed and
added to the NE_SKI_DIR form since the information in the subform is repeated and
it is inefficient to repeat the labels. The fields will be rearranged so data is presented
horizontally for easier scrolling. When the formatting is complete, the form will appear
as shown in Figure 5-4.

Figure 5-4. The NE_SKI_DIR Form

STATE XXXX
SKI_TRAILS
NAME TYPE CITY

):0:9.:9,9:0:9:9.9.0:0:9:9.:9.0.0,0.9:0.0.GIND);0.:9.:0.9:0:9.9.9.9.0.9.0,9,0:9:9.0:0:¢

TAG XXXXKXXXXXKXXXXXXXXXXXXXXX

Edit type: EDIT REFORMAT SIZE Exit

Follow these steps to reformat the form:

1. Delete the three labels on the SKI_TRAILS form, using the instructions from the
previous section.

2. Using the steps described in the section Adding a header to the NEW_SKI_AREA
form, move the fields so that they line up horizontally, with the NAME field on the
left, the TYPE field in the middle, and the CITY field on the right.

The SKI_TRAILS form should appear as shown in Figure 5-5.

Figure 5-5. The SKI_TRAILS Form

):0:0:0:9:9:9.0.9.9.9:9.0.0.0.0.9:0:0.0. G QD 9:9.9.9:9:9:0.0,0.0.9.0:0.9:9:9.9.9.4

5-6 The Ski Directory Example: A Fred Tutorial

The Application Forms

The next step is to name, save, and close the SKI_TRAILS form. To do this:

1.

2.
3.
4

Select any field or label and press Enter.
Select exit from the Edit options tag line.
Select exit from the Edit type tag line.

Select save from the Retention options tag line. fred prompts you to enter a name
for the form.

Type in SKI_TRAILS and press Enter.

Select commit from the "Pick one, please” menu.

The NE_SKI_DIR Form

Now you create the NE_SKI_DIR form based on the STATES relation. To create the
form:

1.

Move the cursor to the create form option on the “Pick one, please” menu, and
press Enter. fred displays a list of relations in the atlas.gdb database.

Select STATES from the list of relations. fred displays the form based on
STATES shown in Figure 5-6.

Figure 5-6. The STATES Form

STATE XXXX
STATE_NAME XX XXX XXX XXX XXX XXKXXXX
AREA 9999999999
STATEHOOD DDDDDDDDDD
CAPITAL KX XXXX XX XXX XXX XXKXXXX

Edit type: EDIT REFORMAT SIZE Exit

The STATES form is the basis for the NE_SKI_DIR form you use for displaying the
information existing in the database about ski areas in specified states. For this appli-
cation, the only field you need is the STATE field, so you can delete the others, as fol-
lows:

1.

2.
3.
4

Select edit from the Edit type tag line at the bottom of the form.
Move the cursor to the STATE_NAME field label and press Enter.
Select delete from the Edit options tag line.

Repeat the previous three steps to delete all other labels and fields except for the
STATE label and field.

The Ski Directory Example: A Fred Tutorial 5-7

The Application Forms

Since this form serves as the basis of the application, it should be as informative as pos-
sible. Add a TAG field that displays messages for the user at runtime. To add the TAG
field:

1. Select Add from the Edit options tag line.

2. Select field from the Add options tag line.

3. Select characteristics from the Add options tag line.
4

Enter the following in the Characteristics menu:

FIELD_NAME TAG
EDIT_STRING X (25)

FILL_STRING 10.0.0.0.:0.0:0:0:0.0:0:0:0:0:0:0:0:0.0:0:9:¢
UPCASE " DATATYPE CHAR
WIDTH) SCALE

ALIGN_RIGHT N LENGTH 50

The NE_SKI_DIR form should now look as shown in Figure 5-7.
Figure 5-7. Adding a Field to NE_SKI_DIR

STATE XXXX
TAG XXXXXXXXXXXXXXXXXXXXXXXXX

Edit type: EDIT REFORMAT SIZE Exit

5-8 The Ski Directory Example: A Fred Tutorial

Creating the SKI_TRAILS Subform

Creating the SKI_TRAILS Subform

The SKI_TRAILS form is used as a subform of the NE_SKI_DIR to display a many-to-
one relationship of ski areas to states. For each state specified, you can use a subform
to display all ski areas in that state. To add SKI_TRAILS as a subform to

NE_SKI_DIR:

1. Select the STATE field and press Enter.

2. Select add from the Edit options tag line.

3. Select repeating subform from the Add tag line. Fred displays a menu listing
all of the forms in the database.

4. Select SKI_TRAILS from the list. fred displays the NE_SKI_AREA form with the

subform, as shown in Figure 5-8.
Figure 5-8. Adding a Subform to NE_SKI_DIR

STATE XXXX

TAG XXXXXXXXXXXXXXXXKXXXXXXXXX

SKI_TRAILS

);9:9:9.9.0.9:9.0:9:9.0.9:9.9:0.9.9.9,9.4 X XAXXX XXX XXX XXX XXXXX

Edit type: EDIT REFORMAT SIZE Exit

To complete the reformatting of the NE_SKI_DIR form, follow these steps:

1.

Using the instructions in the section Formatting the NEW_SKI AREA Form,
move the TAG label and field to the bottom right of the NE_SKI_DIR form.

Add text so that the fields for the SKI_TRAILS output are labeled with their cor-
rect names. The form should look as shown in Figure 5-9.

The Ski Directory Example: A Fred Tutorial 5-9

Creating the SKI_TRAILS Subform

Figure 5-9. Formatting the NE_SKI_DIR Form

STATE XXXX
SKI_TRAILS
NAME TYPE CITY

D:0.0.0.0:0:9:0:9:0:0.0:9:0:0:0.0:0.0.0 QD¢ XXXXXXXXKXKXKXXXXXKKKK

TAG XXXXXXXXXXXXXXXXXXXXXXXXX

Edit type: EDIT REFORMAT SIZE Exit

Finally, name, save, and close the NE_SKI_DIR form. To do this:
1. Select any field or label and press Enter.

2. Select exit from the Edit options tag line.

3. Select exit from the Edit type tag line.
4

Select save from the Retention options tag line. Fred prompts you to enter a
name for the form.

Type in NE_SKI_DIR and press Enter.

Select commit from the "Pick one, please” menu.

> o

5-10 The Ski Directory Example: A Fred Tutorial

Completing the fred Session

Completing the fred Session

All of the forms for the New England Ski Directory are defined and formatted. End
your fred session after committing the changes to the database. To commit the
changes and exit fred:

1. Select commit from the “Pick one, please” menu.

2. Select Exit Form Editor from the same menu.

The Ski Directory Example: A Fred Tutorial 5-11

Using the Forms in an Application

Using the Forms in an Application

The next chapter describes how forms are used in qli and GDML. Refer to the section
on the New England Ski Directory Application for the GDML code that uses the forms
created in this chapter as an application interface.

5-12 The Ski Directory Example: A Fred Tutorial

For More Information

For More Information

For more information on:

e Keyboard commands, refer to Appendix A, Platform Specific Notes for machine-
specific keyboard variations.

e GDML statements for use with forms, see Chapters 7 and 8 of this manual.

The Ski Directory Example: A Fred Tutorial 5-13

5-14

Chapter 6
Using Forms with Qli

This chapter describes storing and retrieving data from an InterBase database using
forms through qli.

Overview

Forms you define using fred can be incorporated into applications or accessed using
qli. This chapter describes using forms interactively in gli.

Using Forms with Qli 6-1

Using Forms in Qli

Using Forms in Qli

When using forms in gli, you can store values in preexisting or system-generated forms
using qli. Qli allows you to use forms in conjunction with the following operations:

e print
o store
¢ modify

qli’s support of forms is limited to simple forms. qli does not support subforms. Thus,
the STATE_SKI example form created in Chapter 3 or the NE_SKI_DIR example form
described in the previous chapter does not work in qli. You can, however, view and
store data using the SKI_AREAS form.

The following sections describe manipulation of values in qli using the SKI_AREAS
form to illustrate operations.

6-2 Using Forms with Qli

Invoking Forms in Qli

Invoking Forms in Qli

There are two ways of working in a form environment in gqli. You can:

¢ Invoke forms automatically using the set form command

e Invoke forms explicitly using the using form clause in a print, store, or modify
statement

The two options are described in the following sections.

Invoking Forms Automatically

The set form command allows you to turn on the forms facility for a qli session, or for
as long as you want to use forms in gqli. Once you have executed set form, a form is
displayed for each print, store, or modify statement invoked. You can turn off the
automatic forms facility by issuing the set no form command.

For example, to display the existing values stored in the SKI_AREAS relation in gli,
type:

QLI> print ski_areas sorted by state

NAME TYPE CITY STATE
Birchwood Acres N Groton MA
Great Farm N Carlisle MA
Bretton Woods B Mt . Washington NH
Waterville Valley B Waterville Valley NH
Windblown N New Ipswich NH
Wilderness B Dixville Notch NH
Epson Hills N Stowe VT
Trapp Family Lodge N Stowe VT
Mt. Mansfield B Stowe VT

To view this data in a form, use the set form statement. When you select the set form
option, qli looks for an existing form for each print, store, or modify operation you
invoke. If there is no existing form, qli puts up a default form, using the same default
format that fred uses.

Thus, to display the relation in a form, type:

QLI> set form
QLI> print ski_areas sorted by state

Using Forms with Qli 6-3

Invoking Forms in Qli

Figure 6-1. Invoking the SKI_AREAS Form

NAME Birchwood Acres
TYPE N

CITY Groton

STATE MA

<enter> to continue, <pfl> to stop

Note
The set form option only works for GDML statements.

The ski areas are displayed in alphabetical order by state. To see the next ski area and
its corresponding data, press Enter. To quit the form and return to the gli prompt,
press PF1.

Note

The termination key may be different according to the platform on which
you are working. Refer to Appendix A for platform-specific notes.

When you no longer want forms invoked automatically, type:

QLI> set no form

Invoking Forms Explicitly

The other option is to invoke a form as needed with the using form clause. For exam-
ple, if you want to invoke a form for the SKI_AREAS relation, you can call the form
explicitly in the following way:

QLI> print ski_areas sorted by state using form

Qli displays the form shown in Figure 6-1.

Note

If you do not specify a form name, qli paints a default form, just as fred
does.

If there is a corresponding form in the database, you can specify the form name.

6-4 Using Forms with Qli

Invoking Forms in Qli

In Chapter 5, you created a form named SKI_TRAILS based on the SKI_AREAS rela-
tion. To invoke the SKI_TRAILS form:

QLI> print ski_areas sorted by state using
CON> form ski_trails

Figure 6-2. Invoking the SKI_TRAILS Form

Birchwood Acres N Groton

<enter> to continue, <pfl> to stop

Displaying Limited Fields in a Form

To express a record selection expression that joins relations or limits the fields to be
displayed, use a view.

For example, suppose you only wanted the NAME and STATE fields of the SKI_AR-
EAS relation displayed in a form. You can create a view containing only the fields you
want, then invoke the view in a form The following example uses the SQL create view
statement to define a view called SKI_STATE:

QLI> create view ski_state as
CON> select name, state from ski_areas order by state

QLI> print ski_state using form

NAME Birchwood Acres
STATE MA

<enter> to continue, <pfl> to stop

Using Forms to Enter and Modify Data

In addition to displaying data, you can use forms to store and modify data. For exam-
ple, in the SKI_AREAS relation, you may want to add new ski area records. To do so,
combine a store statement with a using form clause, as follows:

QLI> store ski_areas using form ski_areas

Using Forms with Qli 6-5

Invoking Forms in Qli

NAME):0,0:0:9:9:0.0.0.0:9:9:0:0:9.0.0.0:0.9:0:0.9.9:9.¢
TYPE X

CITY 0:0,0.0,9,9.:9:9.9.9.9.0:9:0:9.:9.0.0,0.9.0:9:0.9:0:4
STATE XXXX

<enter> to continue, <pfl> to stop

Refer to Chapter 2 for information on navigating the form and editing fields.

Similarly, you can use the using form clause with a modify statement to identify
fields that can be modified, as follows:

QLI> for ski_areas with name = "Bretton Woods"
CON> modify using form

NAME | Bretton Woods |
TYPE

CITY [Mt . Washington
STATE

<enter> to continue, <pfl> to stop

The updatable fields are displayed in reverse video. Refer to Chapter 2 for information
on navigating the form and editing fields.

6-6 Using Forms with Qli

Formatting a Form in Qli

Formatting a Form in Qli

You can call the forms editor from qli using the edit form statement followed by a
form or relation name.

For example, the following invokes the form editor for the form based on the RIVERS
relation:

QLI> edit form rivers

RIVER):0:9.0:9:0.0:0:9.0.0:0.0.0:0:9:0.0.9.9:9.9.0.9:9,0.0:9,:0.0.0.
SOURCE XXXX
OUTFLOW):0:0:0:9:0.0:9:0.0.9:0.0.0.9:0.9.9:9.9.9:0.9:9:9.0.9.9,0.0.9:¢
LENGTH 9999999999

For details on the edit options, refer to Chapter 3, Editing a Form.

When you have finished editing a form, exit the form editor by pressing the PF1 key.
To save the edited version of the form, commit the current transaction:

QLI> commit
To revert to the last saved version of the form, roll back the current transaction:

QLI> rollback

Using Forms with Qli 6-7

For More Information

For More Information

For information on using forms in qli, refer to:

* The chapter on forms in the QI Guide.
* The Qi Reference for the syntax of the following statements:
- set forms
- print using form
- store using form
- modify using form
- edit form

6-8 Using Forms with Qli

Chapter 7
Using Forms with GDML

This chapter describes creating and using forms interfaces in programs.

Overview

You can use form manipulation statements in GDML or SQL programs.

GDML supports both forms and subforms. GDML provides form manipulation state-

ments for displaying forms and using forms to gather and display data. There is also a
menu facility that lets you build and display menus to provide users with options that
execute program code.

Note

If you use GDML with forms and you have your code in more than one file,
you must include WINDOW_SCOPE GLOBAL in the file containing the
main routine and WINDOW_SCOPE EXTERN in all other files. If you do

not include these statements, link errors will occur.

Using Forms with GDML 7-1

Displaying a Form

Displaying a Form

The form manipulation capabilities for GDML center on the for_form statement. The
for_form statement is terminated by the end_form statement. Within the scope of
the for_form block, you can include commands to:

e Assign values to form fields
e Display the form
* Write values to the database

The for form statement (the statement can also be written for_form) binds a form to
a window, associates the form with the program, and prepares the form for display.

Aside from the for_form statement, some of the statements you can use to manipulate

a form are:

* Thefor loop inside the for_form statement. This creates the record selection you
want displayed. You do not need to display every field on the predefined form.
Placing the for loop inside the for_form loop also avoids reinitializing the form
for each record retrieved.

* Context variables allow you to identify the target (that is, the form you want dis-
played), and the source (the database relation and records). In the following pro-
gram, the variable representing the target is x, and the variable representing the
source is s.

* The display statement displays the form fields specified. The sample program
lists all of the fields. You can display selected fields, or use the option displaying
* to display all fields.

* Theif statement sets up a condition, using the TERMINATOR field to test for the
terminating action (in this case pressing the F1 key) that breaks out of the for
loop and returns control to the application. InterBase assigns to the terminator
field the last key passed by the user during the display statement. For example,
the terminator can show the user pressed the Enter key, a function key, or updat-
ed a field that has a waking_on attribute.

* The ending statements end_for, end_form, commit, and finish close off the ac-
tions started at the beginning of the program.

The following program displays the SKI_AREAS form. To run the example, you must
first create the SKI_AREAS form, as described in Chapter 2, Creating a Form:

database db = "atlas.gdb";
main ()

{

ready;

7-2 Using Forms with GDML

start_transaction;

for_form f in ski_areas

for s in ski_areas sorted by s.state

strcpy (f.name, s.name);

strcpy (f.type, s.type):

strcpy (f.city, s.city);
(

strcpy (f.state, s.state);
display f displaying name, type, city,
state;
if (f.terminator == PYXIS_SKEY_PF1)
break;
end_for;
end_form;
commit;
finish;

}

Using Forms with GDML

Displaying a Form

7-3

Creating a Window

Creating a Window

The create_window statement lets you override the dimensions for a window that the
display statement provides for a form. You specify dimensions in a program by assign-
ing values to the variables gds_$width and gds_$height and including a
create_window statement.

gds_$width is measured in character cell units. It can have between 1 and 80 col-
umns.

gds_$height is also measured in character cell units. It can have between 1 and 24
rows. Using these variables you can position a form in a window.

The following code fragment uses the create_window statement to set the height of
the window to 20 rows and the width to 80 columns:

DATABASE DB = ‘atlas.gdb’
main ()

{
char answer;
short found;

gds_Sheight = 20;
gds_Ss$width = 80;
CREATE_WINDOW;

READY;
START TRANSACTION;

7-4 Using Forms with GDML

Deleting a Window

Deleting a Window

If you want to close a window that you have previously opened by displaying a form or
by explicitly creating a window for one, include a delete_window statement in an
appropriate place in your program. The program at the end of this chapter includes a

delete_window statement.

Using Forms with GDML 7-5

Using Attributes

Using Attributes

GDML has three attributes unique to forms that you can use to set aspects of a form,
or to determine what action has occurred. The attributes you use for this are the .state
attribute, the .terminator attribute, and the .terminating _key attribute. By using
attributes you can determine such things as when control should return to an applica-
tion, whether an entered value is valid, or whether a user has entered a value for a field
that requires a value.

The .State Attribute

Each field in a form has attributes associated with it. For example, its datatype or its
length. Another attribute is the field’s state, or condition. In forms, GDML allows you
to manipulate this condition on input (before executing a display) and on output (after
executing a display).

The .state attribute is a field-specific attribute. The values you can assign toit on input
are similar to the options you can use in the display statement. Although this is a less
common usage of .state, it is valuable if you want the application to determine at run
time how to treat the field. If you do this, then you need to include the overriding
option in the display statement.

To use the .state attribute, you assign pyxis constant values to fields. They are listed
in the following table.

Table 7-1. Input values for .state attribute

Mnemonic Numeric | Function

PYXIS_$OPT DISPLAY 1 Displays the field with the
value given in the program

PYXIS_$OPT UPDATE 2 Allows the user to update
this field

PYXIS $OPT WAKEUP 4 Returns control to the

application program im-
mediately if the user up-
dates this field

PYXIS $OPT_POSITION 8 Places the cursor on this
field when the display exe-
cutes

7-6 Using Forms with GDML

Using Attributes

If you want the application to determine what actions have occurred against a partic-
ular field, you can use the .state attribute on output. Since this usage of .state concerns
output, the values are meaningful only after a display statement. The values on out-
put in the .state field are numeric values, so you can use relational operators to com-
pare a .state value to a pyxis constant value. Those values are listed in the following
table.

Table 7-2. Output values for .state attribute

Mnemonic Numeric | Function

PYXIS_$OPT USER_DATA 4 The user has changed
the value in this field

PYXIS_$OPT INITIAL 3 The value in this field has

not changed since the
previous display state-
ment

PYXIS_$OPT DEFAULT 2 This field has default val-
ues

PYXIS_$OPT NULL 1 The field has no default
values, nor has the user
changed it

In the following example, the .state attribute is used to determine whether the user has
entered data, and if so what action to take:

FOR_ITEM FC IN F.CITY_POP_LINE
if (FC.POPULATION.STATE == PYXIS_SOPT_USER_DATA)
FOR C IN CITIES WITH C.CITY = FC.CITY
AND C.STATE = F.STATE
MODIFY C USING
C.POPULATION = FC.POPULATION;
END_MODIFY;
END_FOR;
END_ITEM;

Since these values are also numeric, you can make comparisons using relational oper-
ators.

Using Forms with GDML 7-7

Using Attributes

The .Terminator Attribute

The .terminator attribute is a form-specific attribute. It contains a value that reflects
the last key pressed by a user during a form display. You have read-only access to this
value, and you use it to determine why control was returned to the application. With
this information the application determines what action to take. For instance, did the
user press Enter, a function key, or enter data into a waking_on field. The .termina-

tor attribute can have the following values:

Table 7-3. Possible Values for .terminator Attribute

Mnemonic Numeric
PYXIS_$KEY_DELETE 127
PYXIS_$KEY_UP 128
PYXIS_$KEY_DOWN 129
PYXIS_$KEY_RIGHT 130
PYXIS_$KEY_LEFT 131
PYXIS_$KEY_PF1 132
PYXIS_$KEY_PF2 133
PYXIS_$KEY_PF3 134
PYXIS_$KEY_PF4 135
PYXIS_$KEY_PF5 136
PYXIS_$KEY_PF6 137
PYXIS_$KEY_PF7 138
PYXIS_$KEY_PF8 139
PYXIS_$KEY_PF9 140
PYXIS_$KEY_ENTER 141
PYXIS_$KEY_SCROLL_TOP 146
PYXIS_$KEY_SCROLL_BOTTOM 147

7-8 Using Forms with GDML

Using Attributes

The following code fragment uses the .terminator attribute:

for_form x in states_form
for s in states sorted by s.statehood
strcpy (xX.state_name, s.state_name);
x.statehood = s.statehood;
X.area = s.area;
strcpy (x.state, s.state);
strcpy (x.capital, s.capital);
display x displaying statehood, area, state,
state_name, capital;
if (x.terminator == PYXIS_SKEY_PF1)
break;
end_for;
end_form;

The .Terminating_field Attribute

This form-specific attribute contains the name of the field the cursor was in when the
user hit a terminating key. You use this attribute to determine which in a list of
waking_on fields the user updated to return control to the application. The following
example shows one way to use the .terminating_field:

FOR FORM X IN TEST_FORM
DISPLAY X ACCEPTING FIELD1l, FIELD2, WAKING_ON FIELDl, FIELD2
if (!strcmp (X.TERMINATING_FIELD, "FIELD2"))
X.FIELD3 = X.FIELD2 * 3;
else if (!strcmp (X.TERMINATING_FIELD, "FIELD1"))
X.FIELD3 - X.FIELD1 * 5;
END_FORM

Using Forms with GDML 7-9

Creating Menus

Creating Menus

GDML supports two kinds of menus:

static

dynamic

Static menus are menus defined and displayed as you would a form, with all menu
options specified.

Dynamic menus are menus created at runtime, with only the menu orientation (hori-
zontal or vertical) specified.

The following sections describe defining static and dynamic menus.

Defining Static Menus

For creating and displaying static menus, GDML provides the case_menu statement,
which resembles a Pascal case statement.

Here are some points about the case_menu statement used in the following program-
ming example:

()

The first display statement, which displays the SKI_AREAS form, uses the dis-
playing * option to display all fields for the SKI_AREAS form.

The case_menu statement is terminated by an end_menu statement. The block
of code controlled by the case_menu statement is divided into smaller blocks by
menu_entree statements that offer choices to the user. When a user selects a
menu_entree, only that block of code is executed.

The case_menu statement is qualified by the transparent option. This option
displays the menu without obscuring the form beneath it.

“Update Ski Area Type” is the title-string argument that names the menu.
The menu_entree keyword is followed by the text string that explains the choice.

The second display statement, under the “Change type” menu_entree, allows the
TYPE field to be updated, and redisplays the SKI_AREAS form.

The following sample program also performs some default checking to determine
whether a new value has been entered for the TYPE field before updating the database
record.

The following program illustrates a case_menu statement. Once again, the
SKI_AREAS form is displayed, but this time a menu prompts the user to modify the
type of ski area, or leave the existing value. Enter the following program to display a
menu for updating the TYPE field for the SKI_AREAS relation using the predefined

7-10

Using Forms with GDML

Creating Menus

SKI_AREAS form. For information on compiling and executing a program in
InterBase, refer to the chapter on preprocessing programs in the Programmer’s Guide.

To run the example, you must first create the SKI_AREAS form, as described in Chap-
ter 2, Creating a Form:

database db = "atlas.gdb";
#define CONTINUE 0

#define STOP 1

main ()

{

short flag;

flag = CONTINUE;
for form x in ski_areas
for s in ski_areas sorted by s.state

strcpy (x.name, s.name);
strcpy (x.type, s.type);
strcpy (x.city, s.city);
strcpy (x.state, s.state);
display x displaying *;

case_menu (transparent) "Update Ski Area Type?"
menu_entree "Leave current value"
menu_entree "Change Type"
display x accepting type
cursor on type waking on type;
if (x.type.state == PYXIS_SOPT USER_DATA)
modify s
strcpy (s.type, x.type):;
end_modify;
menu_entree "Exit"
flag = STOP;
end_menu;

-7

if (flag == STOP)
break;
end_for
end_form;
delete_window;
finish;

}

Using Forms with GDML 7-11

Creating Menus

Defining Dynamic Menus

For creating and displaying dynamic menus, GDML provides the for_menu state-
ment, similar in construct to the for_form statement. A dynamic menu is useful for
creating a menu the contents of which are not determined until run-time. For example,
the Edit Form menu fred displays is a dynamic menu since the available forms are not
known until run-time.

You build dynamic menus by using the for_menu statement and its terminator, the
end_menu statement. Within these delimiters, you use the substatements put_item
to write information to the menu and for_item to read information from the menu.

Within a put_item block, you establish the menu title and menu entrees by giving val-
ues to entree_text, entree_length, and entree_value.

Here are some points about the for_menu statement:
¢ You define the menu by assigning a title, title length, and menu orientation (the
default orientation is vertical).

* To establish the contents of the menu, you use a put_item statement that speci-
fies the source for the menu entree, the display length, and a value to assign to
each entree instance.

* You use a display statement similar to the display statement used for a form to
display the menu.

The for_menu statement is used in the sample program at the end of this chapter to
display a menu of states in New England plus an exit option.

7-12 Using Forms with GDML

Using Subforms in GDML

Using Subforms in GDML

As described in Chapter 3, subforms are commonly used for displaying repeating val-
ues within a form. The example for subforms uses a subform to present information
about ski areas in each of the New England states.

To display a subform in GDML, you use a nested for form statement. The subform is
controlled by its own loop construct to prevent the primary form from being updated
and redisplayed for every change made within the subform.

The following example program displays the NE_SKI_DIR form defined in Chapter 5.
The NE_SKI_DIR form includes the SKI_TRAILS form as a subform.

If you plan to run this example program, be sure you have followed the
steps in Chapter 5 to create the NEW_SKI_AREAS form and the
NE_SKI_DIR form with the SKI_TRAILS subform.

The New England Ski Directory Application

If you have created the forms for the New England Ski Directory application following
the steps in Chapter 5, and you want to enter the application code, type the sample pro-
gram into an editor.

The code for the following program is included with your software in the examples
directory. The filename is forms_ski.e.

To run the turorial program, you must first preprocess, then compile the program.
Refer to the chapter on preprocessing with gpre in the Programmer’s Guide.

DATABASE DB = ‘atlas.gdb’;

static char state_list([7][5] = {"CT", "MA", "ME", "NH", "RI",
IIVTI!, "EXit"},'

main ()

/*******************************
main
Prompt the user for a state, then display menu

*

*

*

* of options
* yuntil user wants to quit.
*

*

******************************/

Using Forms with GDML 7-13

Using Subforms in GDML

{
int state_idx;

READY;
START_TRANSACTION;

state_idx = get_state();
/* Select a state */

while (state_idx != 7)
{
CASE_MENU "Choose one™"
MENU_ENTREE "View Ski Areas":
view_ski_areas (state_list[state_idx]);
MENU_ENTREE "Store New Ski Area":
store_ski_area (state_list[state_idx]);
MENU_ENTREE "Pick New State":
state_idx = get_state();
MENU_ENTREE "Exit New England Directory":
state_idx = 7;
END_MENU;
}

COMMIT;
FINISH;
}

get_state ()

/*******************************

* get _ s tate

Create a dynamic menu containing the 6 New England
states plus an "Exit" option. Return the state or
signal to quit.

L S

*******************************/

{

int 1;
FOR_MENU M

strcpy (M.TITLE_TEXT, "Choose a state");

7-14 Using Forms with GDML

Using Subforms in GDML

M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;

for (1 = 0; 1 < 7; 1i++)
{

PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, state_listl[i]);
E.ENTREE_LENGTH = 4;
E.ENTREE_VALUE = 1i;

END_ITEM;

}

/* User selects a state, or "exit" */

DISPLAY M;

return M.ENTREE_VALUE;
END_MENU;
}

view_ski_areas (state)
char *state;
/*******************************

* view_state
*

* Display the ski areas in the state selected.
*

*******************************/

{

int count = 0;

FOR FORM F IN NE_SKI_DIR
strcpy (F.STATE, state);

/* Fill in the Subform */

FOR SK IN SKI_AREAS WITH SK.STATE = state
PUT_ITEM P IN F.SKI_TRAILS
strcpy (P.NAME, SK.NAME) ;
strcpy (P.TYPE, SK.TYPE);
strcpy (P.CITY, SK.CITY);
END_ITEM;
count++;
END_FOR;

Using Forms with GDML 7-15

Using Subforms in GDML

if (!count)
strcpy (F.TAG, "No ski areas listed.");
else
sprintf (F.TAG, "%d ski areas listed.", count) ;

DISPLAY F DISPLAYING *;

END_FORM;
}

store_ski_area (state)
char *state;

/*******************************

* store_ski_area
*

* Store a ski area record in the state selected.
*

*******************************/

FOR FORM F IN NEW_SKI_AREA
strcpy (F.STATE, state);

DISPLAY F DISPLAYING STATE
ACCEPTING NAME, TYPE, CITY;

STORE SK IN SKI_AREAS USING
strcpy (SK.NAME, F.NAME);
strcpy (SK.TYPE, F.TYPE);
strcpy (SK.CITY, F.CITY);
strcpy (SK.STATE, F.STATE);

END_STORE;

END_FORM;
}

7-16 Using Forms with GDML

Using Subforms in GDML

Error Handling

Error handling in this release of the forms package is characterized by the following

behavior:

* The form statements do not currently support the on_error clause. An error, such
as gpre’s failure to find a referenced form, results in an error message and the ter-
mination of the program.

* Conversion errors result in an error message, but do not cause the program to ter-
minate. However, the program has no way of knowing that an error occurred.

Using Forms with GDML 7-17

For More Information

For More Information

For syntax for the following statements, refer to the entry in Chapter 8:
e for_form

e case_menu
e display

e for_menu

e for_item

e put_item

7-18 Using Forms with GDML

Chapter 8
Using Blobs with Forms

This chapter illustrates how to use blobs with forms. It requires that you create a form
called VFORM on the VARIED_XC relation. The atlas.gdb sample database is used.

DATABASE DB = 'atlas.gdb'

/*
* Here 1is an example of editing a blob while using forms.
*/

main ()

{

READY ;

START_TRANSACTION;
view_form() ;
COMMIT;

FINISH;

exit (0);

}

view_form ()

{

Using Blobs with Forms 8-1

FOR FORM F IN VFORM

FOR R IN VARIED_XC
strcpy (F.area_name,
strcpy (F.state, R.state);
F.comments = R.comments;

R.area_name) ;

DISPLAY F DISPLAYING * ACCEPTING area_name, state;

FOR S IN VARIED_XC WITH S.area_name = F.area_name

MODIFY S USING
s.state, f.state);

strcpy (
BLOB_edit (GDS_REF (s.comments), DB, gds_S$trans,
"comments");
END_MODIFY;
END_FOR;
END_FOR;

END_FORM;
DELETE_WINDOW;

}

8-2 Using Blobs with Forms

Chapter 9
Forms Reference

This chapter describes the syntax and usage of GDML statements used for form manip-
ulation.

Overview

This section provides syntax and examples for the following forms-specific GDML
statements:

case_menu
display

for form
for_item
for_menu

put_item

Chapter 7 gives examples for the statements described in the following sections.

Forms Reference 9-1

Case_Menu Statement

Case Menu Statement

Function

Syntax

9-2

The case_menu statement displays a menu in the forms win-
dow and executes the code associated with the user’s choice.

case_menu [(options)]title-string menu-entrees
end_menu

menu-entrees::= {menu_entree entree-string}
options::= {vertical horizontal|transparent}

title-string
A quoted string that provides the title line for the menu.

menu_entree

Establishes a line that appears in a menu and introduces a
block of code that executes if the line is chosen:

* All code between the keywords case_menu and end_menu
must be introduced by menu_entree labels.

* To specify an option to continue without taking any action,
include a null statement under the menu_entree label.

Because the case_menu statement is like a Pascal case state-
ment, and not like a C switch statement, choosing a menu
item executes only the code between that item and the next
item or end_menu.

entree-string

A quoted string that becomes a line in a vertical menu or a
selection item in a horizontal menu.

vertical

Displays the menu choices in a vertical format. This display
option is the default. A vertical menu obscures the contents
of the current form with its menu choices.

horizontal

Displays the menu choices in a horizontal format. A horizontal
menu, also called a “tag-line menu,” displays the menu
choices on the bottom line of the current form.

Forms Reference

Example

Case_Menu Statement

transparent

Displays the menu choices, obscuring only those parts of the
form directly behind the menu.

The following example cycles through the atlas.gdb database,
displaying a menu for each displayed state and prompts the
user to update the state’s capital or exit from the iteration:

database db = "atlas.gdb";

#define CONTINUE 0
#define STOP 1

main ()
{
short flag;

ready db;
start_transaction;

flag = CONTINUE;
for form x in show_state
for s in states sorted by s.statehood

strcpy (x.state_name, s.state_name);
x.statehood = s.statehood;
X.area = s.area;
strcpy (x.state, s.state);
strcpy (xX.capital, s.capital);
display x displaying *;

case_menu (transparent) "Alter State?"
menu_entree "No Changes":
menu_entree "Change Capital":
display x accepting capital
cursor on capital waking on capital;
if (x.capital.state ==
PYXIS_SOPT_USER_DATA)
modify s
strcpy (s.capital, x.capital);
end_modify;

Forms Reference 9-3

Case_Menu Statement

menu_entree "Exit"
flag = STOP;
end_menu;

if (flag == STOP)
break;
end_for;
end_form;
delete_window;
commit ;
finish;

}

Troubleshooting See the appendix about error handling in the Programmer’s
Reference for a discussion of errors and error handling.

See Also See the entries in this chapter for:

¢ display

¢ for_form

9-4 Forms Reference

Display

Function

Syntax

Display

The display statement displays a form or a menu on the user’s
screen. In a form, it also:

e Controls the fields that are displayed, those that can be up-
dated, the cursor position, and other characteristics of the
form.

e Inamenu, it controls the orientation of the display and how
the menu appears in relation to other menus on the screen.

¢ In aform, each display attribute can appear at most once
per display statement.

A display statement must occur inside a for_form -
end_form block or inside a for_menu - end_menu block.

Form format:

display form-context-variablel[display-
attribute...]

display-attribute::=

accepting field-1ist

cursor on field-name/

displaying field-1list]/

no_wait|

overriding field-list/

waking on field-list
field-1list::=
{*| field-commalist}::=
{field-name|subform.subform-field-name}

Menu format:

display menu-context-variable
[horizontal|vertical]
[transparent | opaque]

Forms Reference 9-5

Display

form-context-variable

Provides a name associated with this instance of the form in
the for_form statement.

field-1ist
Specifies an asterisk (*) indicating that all fields are listed,
a commalist of form field names without any qualifiers, or a
field in a subform. The subform variant allows you to both
read and write a field from a subform, a capability not avail-
able in the for_item and put_item statements by them-
selves.

accepting
Specifies which fields can be updated.

cursor on

Specifies the field on which the cursor is positioned when
the form appears.

displaying
Lists the fields for which values established in the program
should replace the fill characters established in the form
definition. If you want to update the value between display
statements, you must signal the change by including the
field in the displaying list of the second display statement.

no_wait
Updates the information on the screen, but does not pause
for user input.

overriding

Lists the fields whose display attributes are controlled at
runtime by the program.

waking on
Lists the fields that cause control to return to the program
if the user changes their value. If you supply more than one
field in the waking on list, you should test the special field
TERMINATING_FIELD when control returns to your pro-
gram to see which field caused the wake-up.

If the wake-up is on a repeating group item, you can refer-
ence other items from the repeating group.

Forms Reference

Examples

Display

menu-context-variable

A qualifier that references the context of the menu in the
for_menu statement.

horizonﬁallvertical
Specifies the orientation of the menu on the screen. The de-
fault is vertical.

transparent | opaque
Transparent specifies the menu displays on the screen with-
out obscuring what is already there. Opaque specifies the
menu displays on the screen and covers what is already
there. The default is opaque.

The following code fragment displays records from the
STATES relation through a form:

for form x in states
for s in states sorted by s.statehood
strcpy (x.state_name, s.state_name);
x.statehood = s.statehood;
X.area

= s.area;
strcpy (x.state, s.state);
(

strcpy (x.capital, s.capital);
display x displaying statehood, area,
state,
state_name, capital;
if (x.terminator == PYXIS_SKEY_PF1l)
break;
end_for;
end_form;

The following code fragment creates a dynamic menu display-
ing the six New England states plus an exit option:

FOR_MENU M
strcpy (M.TITLE_TEXT, "Choose a state");
M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;
for (1 = 0; 1 < 7; 1i++)
{
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, state_list [i]);

Forms Reference 9-7

Display

Troubleshooting

See Also

E.ENTREE_LENGTH = 2;
E.ENTREE_VALUE = 1i;
END_ITEM;
}
DISPLAY M;
return M.ENTREE_VALUE;
END_MENU

See the appendix about error handling in the Programmer’s
Reference for a listing of errors and error codes.

See the entries in this chapter for:

e case_menu
e case form

e for_menu

Forms Reference

For Form

Function

Syntax

For Form

The for form statement binds a form definition to a window
and creates a context in which form fields can be referenced.
This statement does not cause a form to appear on the screen.
Use the display substatement to make the form appear on
your screen.

For form statements can be nested. As the forms are dis-
played, they overlay each other. Unless a form is specified as
tag or transparent, it completely covers the previously dis-
played form.

for form [(options)] form-context-variable in
[database-handle.] form-name
form-context-variable.field-name |[.state]
statement end_form
options::= {transparent| tag]
form-handle form-handle-variable |
transaction-handle transaction-handle-
variable

transparent
Pushes a transparent form over the current form, covering

only those portions that are actually behind text on the top
form.

tag

Displays a one-line tag form horizontally in the bottom line
of the form.

form-handle

Specifies a variable by which gpre can refer to the form in
its calls to pyxis. If you do not specify a form-handle, gpre
assigns it a unique name. If you do specify a form-handle,
you can use the variable to invoke the form in different rou-
tines.

Forms Reference 9-9

For Form

transaction-handle

Specifies the transaction you want to commit. If the trans-
action you want to commit has a transaction handle associ-
ated with it, you must use that handle when you commit the
transaction. If you do not specify a transaction handle on a
commit statement, InterBase commits the “default” trans-
action. The default transaction is what InterBase starts
when you use a start_transaction statement without a
handle.

form-context-variable

The context variable qualifies references to the form fields

to distinguish them from database fields or program vari-
ables.

form-name

Specifies the form to bind. The form name must be the name
of a form already defined in a database. If you include a da-
tabase handle, the form must be in that database. Other-
wise, gpre searches databases referenced by the program,
beginning with the most recently declared database.

statement

Any host language statement or a GDML display,
for_item, or put_item statement. See the entries in this
chapter for these statements. The for form statement al-
lows free reference to form fields inside the for form and
end_form structure. If your program performs a statement,
such as a return from a subprogram, that cause it not to
drop through to the end_form terminator, it first executes
a call to pyxis_$pop_window. gpre automatically pro-
vides the context of gds_$window. The syntax for this call
follows.

C:

All other languages:

pyxis_$pop_window (&gds_$window)

pyxis_$pop_window (gds_$window)

9-10

Forms Reference

Example

Troubleshooting

See Also

For Form

The following code fragment displays records from the STATES
relation through a form:

for form x in states

for s in states sorted by s.statehood

strcpy (x.state_name, s.state_name) ;
x.statehood = s.statehood;

X.area = s.area;

strcpy (x.state, s.state);

strcpy (x.capital, s.capital);
display x displaying statehood, area,

state,
state_name, capital;
if (x.terminator == PYXIS_SKEY_PF1)
break;
end_for;
end_form;

See the Programmer’s Reference for a discussion of errors and
error handling.

See the entries in this chapter for:

e case_menu

e display

e for_item

¢ put_item

Forms Reference 9-11

For_ltem

For ltem

Function

Syntax

9-12

The for_item statement is used inside a for_form statement
to read items from a repeating group. The for_item statement
allows only read access to the fields in its substatements.

Form format:

for_item subform-context-variable in
form-context-variable.subform-name
statement
end_item

Menu format:

for_item entree-context-variable in menu-
context-variable entree-assignment -
statements

end_item

subform-context-variable

Specifies a context variable for the subform. This context
variable must uniquely identify the subform in the form.

form-context-variable.subform-name

Specifies the subform name qualified with the context vari-
able associated with the form in which the subform exists.

entree-context-variable

A qualifier that references the context of the entree in the
for_item statement.

menu-context-variable

A qualifier that references the context of the menu in the
for_menu statement.

entree-assignment-statements

Host language statements that read the values of entree-
context-variable.entree_text, entree-context-variable.en-
tree_length, and entree-context-variable.entree_value.

Forms Reference

Example

Troubleshooting

See Also

For_ltem

The following code fragment modifies database records appear-
ing in a subform:

FOR FORM F IN CITY_STATES
FOR_ITEM FC IN F.CITY_POP_LINE
IF (FC.POPULATION.STATE ==
PYXIS_SOPT_USER_DATA)
FOR C IN CITIES WITH C.CITY = FC.CITY
AND C.STATE = F.STATE
MODIFY C USING
C.POPULATION = FC.POPULATION;

END_MODIFY;
END_FOR;
END_ITEM;
END_FORM

Appendix C of this book contains the program from which this
extract was taken.

See Appendix A of the Programmer’s Reference for a discussion
of errors and error handling.

See the entries in this chapter for:
* case_menu

¢ display

Forms Reference 9-13

For_Menu

For Menu

Function

Syntax

9-14

The for_menu command lets you create a dynamic menu.

A dynamic menu obtains the specifications for its title, entries
and format at runtime. These specifications most often come
from dynamic user input or from database values. This differs
from the case_menu command which requires you to specify
all of these characteristics before the application is compiled.

for_menu [(menu_handle menu-handle)] menu-
context-variable
menu-title-assignment-statements
entree-assignment-statements
display statement
menu-result-statements

end_menu

menu_handle
Specifies a variable by which gpre can refer to the menu in
its calls to pyxis. If you do not specify a menu-handle, gpre
assigns it a unique name. If you do specify a menu-handle,
you can use the variable to invoke the menu in different rou-
tines.

menu-context-variable

A qualifier that references the context of the menu in the
for_menu statement.

menu-title-assignment-statements
Host language statements in which you assign values to
menu-context-variable.title_text and menu-context-
variable.title_length. These statements must appear be-
tween the for_menu statement and the end_menu state-
ment, and before the display statement.

entree-assignment-statements

Host language statements in which, within a put_item
statement, you assign values to entree-context-variable.en-
tree_text, entree-context-variable.entree_length, and en-

Forms Reference

Example

For_Menu

tree-context-variable.entree_value. These statements
must appear between the for_menu statement and the
end_menu statement, and before the display statement.

display statement
The display statement displays a menu on the user’s screen.
This statement must appear between the for_menu state-
ment and the end_menu statement and after all title and
entree assignment statements.

menu-result-statements
Host language statements that use the values of menu-con-
text-variable.entree_text, menu-context-variable.entree_
length, and menu-context-variable.entree_value for the
entree selected from the menu.

The menu-result-statement also reads the menu-context-
variable.terminator to determine what key was pressed to
terminate the menu selection. This statement must appear
between the for_menu statement and the end_menu
statement, and after the display statement.

The following C code fragment creates a menu consisting of the
first ten cities in the CITIES relation. Once the user chooses a
city, the program displays the selected city name and its popu-
lation:

FOR_MENU M
strcopy (M.TITLE_TEXT, "Choose a City");
M.TITLE_LENGTH = strlen(M.TITLE_TEXT)
FOR FIRST 10 C IN CITIES SORTED BY DESCENDING
POPULATION
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, C.CITY);
E.ENTREE_LENGTH =
strlen(E.ENTREE_TEXT) ;
E.ENTREE_VALUE = C.POPULATION;
END_TITEM
END_FOR
for (;;)
{
DISPLAY M VERTICAL
if (M.TERMINATOR == PYXIS_SKEY_PF1)

Forms Reference 9-15

For_Menu

Troubleshooting

See Also

9-16

break;
printf ("You chose %s, population %d\n",
M.ENTREE_TEXT, M.ENTREE_VALUE) ;

}
END_MENU

See the appendix about error handling in the Programmer’s
Reference for a listing of errors and error codes.

See the entries in this chapter for:

* case_menu
e display
¢ for_item

* put_item

Forms Reference

Put_ltem

Function

Syntax

Put_Item

The put_item statement is used inside a for_form statement
to write items to a repeating group. Each put_item statement
adds one row (that is, one group) to a subform. It is used inside
a for_menu statement to add instances of entrees to a menu.
You terminate a put_item statement with an end_item.

Form format:

put_item subform-context-variable in form-con-
text-variable.subform-name

statement
end_item

Menu format:

put_item entree-context-variable in menu-con-
text=variable

entree-assignment-statements
end_item

subform-context-variable

Specifies a context variable for the subform. This context
variable must uniquely identify the subform in the form.

form-context-variable.subform-name

Specifies the subform name qualified with the context vari-
able associated with the form in which the subform exists.

entree-context-variable

A qualifier that references the context of the entree in the
for_item statement.

entree-assignment-statement
Host language statements in which you assign values to en-
tree-context-variable.entree_text, entree-context-vari-
able.entree_length, and entree-context-
variable.entree_length.

Forms Reference 9-17

Put_ltem

Examples

9-18

The following program adds records to a subform’s repeating
groups:

database db = "atlas.gdb";

main ()
{
ready;
start_transaction;
for s in states
for form f in city_states
strcpy (f.capital, s.capital);
f.statehood = s.statehood;
strcpy (f.state_name, s.state_name);
f.area = s.area;
for ¢ in cities with c.state = s.state
put_item cs in f.cities
strcpy (cs.city, c.city);
cs.altitude = c.altitude;
cs.population= c.population;
end_item;
end_for;
display f displaying *
end_form;
end_for;
COMMIT;
FINISH;
}

The following code fragment creates a dynamic menu display-
ing the six New England states plus an "Exit" option:

FOR_MENU M
strcpy (M.TITLE_TEXT, "Choose a state");
M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;
for (i1 = 0; 1 < 7; i++)
{
PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, state_list [1]);
E.ENTREE_LENGTH = 2;
E.ENTREE_VALUE = 1;

Forms Reference

Put_ltem

END_ITEM;
}
DISPLAY M;
return M.ENTREE_VALUE;
END_MENU

Troubleshooting See the appendix about error handling in the Programmer’s
Reference for a listing of errors and error codes.

See Also See the entries in this chapter for:

* case_menu
e display
e for_form

e for_item

Forms Reference 9-19

9-20

Appendix A
Platform Specific Notes

Apolio Notes

This section describes differences between fred’s behavior documented in previous
chapters and fred’s behavior on Apollo workstations.

Some of the differences are:
* Mouse support with an Apollo workstation.

¢ Keyboard commands used for editing and navigation.

Mouse Support

InterBase supports the mouse if you are using forms on an Apollo. You can use the
mouse to navigate in forms and menus, and use the mouse buttons in the place of the
Return and Enter keys.

Mouse actions are mapped to keystrokes as shown in Figure A-1.

Platform Specific Notes A-1

Apollo Notes

Figure A-1. Mouse Support in Fred

Return

Moving the mouse corresponds to the arrow keys. For example, using the mouse to
move the cursor toward the top of the screen is the same as using the up arrow key.

Editing Keys

Apollo workstations have different key assignments for some forms editing functions.
The following table lists the editing functions described in Chapter 2, Editing a Form,
and points out key command variations on Apollo keyboards.

The keys in bold typeface are edit keys; the others are cursor movement keys.

Figure A-2. Apollo Editing Key Commands

Edit Non-Apolio Apollo

Function Key Key

Edit Ctrl-G EDIT

Insert/overstrike Ctrl-A INS

Erase Ctrl-U LINE DEL

Insert any printable any printable
character character

A-2 Platform Specific Notes

Figure A-2. Apollo Editing Key Commands continued

Edit Non-Apollo Apollo
Function Key Key

Right right arrow right arrow
Left left arrow left arrow
Delete Delete Backspace
Delete next character | Ctrl-F CHAR DEL

Go to start Ctrl-H left bar arrow
Go to end Ctrl-E right bar arrow

Platform Specific Notes

Apollo Notes

A-3

Sun Notes

Sun Notes

If you are using forms on a Sun workstation, you may encounter some unexpected
behavior. Here are some things to beware of:

e Forms require a shell tool window. If youinvoke a form in any other type of window
(for example, a console), InterBase forces the window to behave like a shell tool
window. Thus, don’t be surprised if you see window scroll bars disappearing.

o Forms might invert the video display. For example, if you are using forms in qli,
you might find that all of your screen display is shown in reverse video.

To fix this problem, type:

QLI> spawn "reset"

A-4 Platform Specific Notes

Keyboard Diagrams

Keyboard Diagrams

The following diagrams show the key value that each programmable key produces.
The diagrams show key-mapping for:

e VT220

e VT100

e Sun3and4

e Sun 386:

¢ Apollo DNxxx

Platform Specific Notes A-5

Keyboard Diagrams

Figure A-3. The VT220 Keyboard

(F1]F2 ‘ F3| F4| F5 l F6 |F7 |F8 |F9 |F10|F11[F1# F1# F141 I l j |F17|F18]FE|7Fﬁ

..

PF{PF2PF 3 PF4

NXT]
C

>

InterBase Constant

PYXIS_$KEY DELETE
PYXIS_$KEY_UP
PYXIS_$KEY_DOWN
PYXIS_$KEY_RIGHT
PYXIS_$KEY_LEFT
PYXIS_$KEY_PF1
PYXIS_$KEY_PF2
PYXIS_$KEY_PF3
PYXIS_$KEY PF4
PYXIS_$KEY_PF5
PYXIS_$KEY_PF6
PYXIS_$KEY_PF7
PYXIS_$KEY_PF8
PYXIS_$KEY_PF9
PYXIS_$KEY_ENTER
PYXIS_$KEY_SCROLL_TOP
PYXIS_$KEY_SCROLL_BOTTOM

Value Returned

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
146
147

A-6 Platform Specific Notes

Generated by

Delete
Up-arrow
Down-arrow
Right-arrow
Left-arrow
PF1

PF2

PF3

PF4

F17

F7

F8

F9

F10

ENTER
PREV SCRN
NEXT SCRN

Figure A-4. The VT100 Keyboard

Keyboard Diagrams

I%I&[el»] PF1|PF2| PF3| PF4

§ § }

s § s
InterBase Constant Value Returned Generated by
PYXIS_$KEY_DELETE 127 Delete
PYXIS_$KEY _UP 128 Up-arrow
PYXIS_$KEY_DOWN 129 Down-arrow
PYXIS_$KEY_RIGHT 130 Right-arrow
PYXIS_$KEY_LEFT 131 Left-arrow
PYXIS_$KEY_PF1 132 PF1
PYXIS_$KEY_PF2 133 PF2
PYXIS_$KEY_PF3 134 PF3
PYXIS_$KEY_PF4 135 PF4
PYXIS_$KEY_PF5 136
PYXIS_$KEY_PF6 137
PYXIS_$KEY_PF7 138
PYXIS_$KEY_PF8 139
PYXIS_$KEY_PF9 140
PYXIS_$KEY_ENTER 141 ENTER
PYXIS_$KEY_SCROLL_TOP 146
PYXIS_$KEY_SCROLL_BOTTOM 147

Platform Specific Notes

A-7

Keyboard Diagrams

Figure A-5. The Sun-3 and Sun-4 Keyboards

L1

L2

R1| R2 |R3

L3

L4

L5

L6

L7

L8

L9

L10

..

R4| R5 | R6
R7 |R84| R9

< >
R10|R11|R12

R13 R1*R15

InterBase Constant

Value Returned

PYXIS_$KEY_DELETE 127
PYXIS_$KEY_UP 128
PYXIS_$KEY_DOWN 129
PYXIS_$KEY_RIGHT 130
PYXIS_$KEY_LEFT 131
PYXIS_$KEY_PF1 132
PYXIS_$KEY_PF2 133
PYXIS_$KEY_PF3 134
PYXIS_$KEY_PF4 135
PYXIS_$KEY_PF5 136
PYXIS_$KEY_PF6 137
PYXIS_$KEY_PF7 138
PYXIS_$KEY_PF8 139
PYXIS_$KEY_PF9 140
PYXIS_$KEY_ENTER 141
PYXIS_$KEY_SCROLL_TOP 146
PYXIS_$KEY_SCROLL_BOTTOM 147
A-8 Platform Specific Notes

Generated by

Delete

R8

R14

R12

R10

R1

R2

R3

R4

R5

R6

R7

R9

R11

R15
Control-T
Control-B

Figure A-6. The Sun 3861 Keyboard

Keyboard Diagrams

L1| L2 | F1| F2| F3 F4| F5| F6| F7| F8 | F9 [F10| F11|F12 R1| R2| R3
L3| L4 E‘“““- T T T T E R4| R5| R6| -
5|6 | | { | r7| refl Ro| +
L7| L8 § i A10R11 T2
L9|L10 § § R13 R1*R15 5
HELP : __________________________________ ‘ E
InterBase Constant Value Returned Generated by
PYXIS_$KEY_DELETE 127 Delete
PYXIS_$KEY_UP 128 R8
PYXIS_$KEY_DOWN 129 R14
PYXIS_$KEY_RIGHT 130 R12
PYXIS_$KEY_LEFT 131 R10
PYXIS_$KEY_PF1 132 R1
PYXIS_$KEY_PF2 133 R2
PYXIS_$KEY_PF3 134 R3
PYXIS_$KEY_PF4 135 R4
PYXIS_$KEY_PF5 136 R5
PYXIS_$KEY_PF6 137 R6
PYXIS_$KEY_PF7 138 R7
PYXIS_$KEY_PF8 139 R9
PYXIS_$KEY_PF9 140 R11
PYXIS_$KEY_ENTER 141 R15
PYXIS_$KEY_SCROLL_TOP 146 Control-T
PYXIS_$KEY_SCROLL_BOTTOM 147 Control-B

Platform Specific Notes

A-9

Keyboard Diagrams

Figure A-7. The Apollo DN3xx Keyboard

[F1|F2|F3|F4]F5 |F6 | F7| FSI

..

..

InterBase Constant
PYXIS_$KEY_DELETE
PYXIS_$KEY_UP
PYXIS_$KEY_DOWN
PYXIS_$KEY_RIGHT
PYXIS_$KEY_LEFT
PYXIS_$KEY_PF1
PYXIS_$KEY_PF2
PYXIS_$KEY_PF3
PYXIS_S$KEY_PF4
PYXIS_$KEY_PF5
PYXIS_S$KEY_PF6
PYXIS_S$KEY_PF7
PYXIS_S$KEY_PF8
PYXIS_$KEY_PF9
PYXIS_$KEY_ENTER
PYXIS_$KEY_SCROLL_TOP
PYXIS_$KEY_SCROLL_BOTTOM

Value Returned
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
146
147

A-10 Platform Specific Notes

Generated by

Delete
Up-arrow
Down-arrow
Right-arrow
Left-arrow
F1

F2

F3

F4

F5

F6

F7

Shift-F1
Shift-F2

F8
Control-T
Control-B

Figure A-8. The Apollo DN3xxx Keyboard

Keyboard Diagrams

l F0| F1|F2| F3|F4|F5|F6lF7lF8 |F9 | I | | l | l

v

=) ¢
<
B!

om=-zZm

InterBase Constant

Value Returned

PYXIS_$KEY_DELETE 127
PYXIS_$KEY_UP 128
PYXIS_$KEY_DOWN 129
PYXIS_$KEY_RIGHT 130
PYXIS_$KEY_LEFT 131
PYXIS_$KEY_PF1 132
PYXIS_$KEY_PF2 133
PYXIS_$KEY_PF3 134
PYXIS_$KEY_PF4 135
PYXIS_$KEY_PF5 136
PYXIS_$KEY_PF6 137
PYXIS_$KEY_PF7 138
PYXIS_$KEY_PF8 139
PYXIS_$KEY_PF9 140
PYXIS_$KEY_ENTER 141
PYXIS_$KEY_SCROLL_TOP 146
PYXIS_$KEY_SCROLL_BOTTOM 147

Platform Specific Notes

Generated by

Delete
Up-arrow
Down-arrow
Right-arrow
Left-arrow
F1

F2

F3

F4

F5

Fé6

F7

Shift-F1

F9 or Shift-F2
ENTER or F8

Control-T or
Boxed-up-arrow

Control-B or
Boxed-down-arrow

A-11

A-12

Appendix B
The Atlas Database

About the Atlas Database

An InterBase database consists of an arbitrary number of relations, each containing an
arbitrary number of fields. The database can also contain views, indexes, security
classes, triggers, their supporting clauses, and the metadata for each of those objects.

The sample database used in the InterBase documentation is based on a North Amer-
ican atlas and gazetteer. The database consists of relations that represent:

e U.S. states (STATES) and Canadian provinces (PROVINCES).

¢ A sampling of North American cities (CITIES).

e Tourism offices for each of the states and provinces (TOURISM).

e Ski areas (SKI_AREAS).

¢ State populations (POPULATIONS).

* A selection of North American rivers (RIVERS) and some of the states through
which they meander (RIVER_STATES).

* Mayors for cities in the CITIES relation (MAYORS), as of 1985. This relation in-
cludes the name, party affiliation, date of next election or date of original appoint-
ment for mayors and city managers in approximately one hundred cities.

¢ The population center for the United States every ten years since 1790 (POPULA-
TION_CENTER).

The Atlas Database B-1

About the Atlas Database

¢ Information about cross-country skiing areas in Massachusetts, Maine, and Ver-
mont (CROSS_COUNTRY). This relation contains facts about trails, availability of
various amenities, and a comment field that describes the ski area.

e Baseball teams and their stadiums, from both the American and National Leagues
(BASEBALL_TEAMS).

¢ Population density for states (POPULATION_DENSITY), a view that divides the
area of a state by its population for each of the last four censuses.

* Geographical data for cities (GEO_CITIES).

* The sample database also contains two views, subsets of one or more relations and
other views.

B-2 The Atlas Database

Appendix C
Sample Forms Programs

Overview

This appendix provides two sample GDML programs that illustrate forms features.
The features are higlighted and described. For information on specific syntax usage,

refer to Chapter 7.

Sample Forms Programs C-1

Sample Program 1

Sample Program 1

The following program illustrates the use of subforms and static menus. It displays a
form, and the user types a state code. The program then displays the cities in that state
along with their populations. The user can update the populations if so desired, and
go on to choose another state. If the user does not enter a state code, the program asks
whether it should commit the updates, and then exits.

The code for the following program is included with your software in the examples
directory. The filename is forms_city_pops.e.

To run the example program, you must first preprocess, then compile the program.
Refer to the chapter on preprocessing with gpre in the Programmer’s Guide.

DATABASE DB = ‘atlas.gdb’

main ()

r

1

char answer;

short found;

/* Create forms window */
gds_Sheight = 20;
gds_Swidth = 80;
CREATE_WINDOW;

/* Open database and start transaction */
READY ;
START_TRANSACTION;

/* Loop until user leaves form without filling in a state code */
found = 1;
while (1)

{

FOR FORM F IN CITY_POPULATIONS

/* Set instructional message to be displayed in form.
* If user just entered state code for a non-existent * state,
say so in the message.
*/
1f (found)

{

strcpy (F.TAG,

"Enter State Code (enter nothing to

exit)");

C-2 Sample Forms Programs

Sample Program 1

found = 0;
}
else
strcpy (F.TAG,
"State not found; Enter State Code
(enter nothing to exit)");

/* Display form and await entering of state code */
DISPLAY F DISPLAYING TAG ACCEPTING STATE
if (F.STATE.STATE == PYXIS_SOPT_NULL) break;

/* Look for state */
FOR S IN STATES WITH S.STATE = F.STATE

/* Note that state was found */
found = 1;

/* Put city information into subform */
FOR C IN CITIES WITH C.STATE = S.STATE
SORTED BY C.CITY
PUT_ITEM FC IN F.CITY_POP_LINE
strcpy (FC.CITY, C.CITY);
FC.POPULATION = C.POPULATION;
END_ITEM;

END_FOR;

/* Put state information into form */

strcpy (F.STATE, S.STATE);

strcpy (F.STATE_NAME, S.STATE_NAME) ;

strcpy (F.TAG, "Update populations if
needed") ;

/* Display current form and allow
* populations to be updated */
DISPLAY F DISPLAYING STATE, STATE_NAME,
CITY_POP_LINE.CITY,
CITY_POP_LINE.POPULATION, TAG
ACCEPTING CITY_POP_LINE.POPULATION;

/* Perform modifications for any
* updated populations */
FOR_ITEM FC IN F.CITY_POP_LINE
if (FC.POPULATION.STATE ==
PYXIS_SOPT_USER_DATA)

Sample Forms Programs C-3

Sample Program 1

FOR C IN CITIES WITH C.CITY =
FC.CITY

AND C.STATE = F.STATE

MODIFY C USING

C.POPULATION = FC.POPULATION;

END_MODIFY;
END_FOR;
END_ITEM;
END_FOR;
END_FORM;

}

/* Make form go away */
DELETE_WINDOW;

/* Check to see whether or not to commit updates */
printf ("Do you want to commit the updates (Y/N): ");
answer = getchar();
if ((answer == 'Y’') || (answer == ‘y’))

COMMIT
else

ROLLBACK;

/* Close down */
FINISH;
}

C-4 Sample Forms Programs

Sample Program 2

Sample Program 2

The following program illustrates the use of subforms and dynamic menus. It displays
a menu of states from which the user picks one. The program then displays the cities
in that state along with their populations. The user can update the populations if so
desired, and go on to choose another state. If the user decides to exit, the program asks
whether it should commit the updates, and then closes the window.

The code for the following program is included with your software in the examples
directory. The filename is forms_state_pops.e.

To run the example program, you must first preprocess, then compile the program.
Refer to the chapter on preprocessing with gpre in the Programmer’s Guide.

DATABASE DB = ‘atlas.gdb’
int * state_menu_handle;

main ()

{

char answer;
short found;
char * valuep;

/* Open database and start transaction */
READY;
START_TRANSACTION;

/* Create the menu of state names. The value of each
* entree is a pointer to the state code for that
* entree */

FOR_MENU (MENU_HANDLE state_menu_handle) M

PUT_ITEM E IN M
strcpy (E.ENTREE_TEXT, "EXIT");
E.ENTREE_LENGTH = strlen (E.ENTREE_TEXT) ;
E.ENTREE_VALUE = 0;

END_ITEM

FOR S IN STATES SORTED BY ASCENDING S.STATE_NAME
PUT_ITEM E IN M

Sample Forms Programs C-5

Sample Program 2

strcpy (E.ENTREE_TEXT, S.STATE_NAME) ;
E.ENTREE_LENGTH = strlen (E.ENTREE_TEXT) ;
valuep = (char *) malloc (strlen (S.STATE)

+ 1);
strcpy (valuep, S.STATE);
E.ENTREE_VALUE = (long) valuep;
END_ITEM
END_FOR
END_MENU

/* Create forms window */
gds_S%Sheight = 20;
gds_Swidth = 80;
CREATE_WINDOW;

/* Loop until user selects EXIT from the States menu. */
while (1)
{

FOR FORM F IN CITY_POPULATIONS

/* Set instructional message to be displayed
* in form. */

strcpy (F.TAG, "Choose a state (Choose EXIT
when finished)");

/* Display form and await selection of state */

DISPLAY F DISPLAYING TAG NO_WAIT;

FOR_MENU (MENU_HANDLE state_menu_handle) M
strcpy (M.TITLE_TEXT, "States Menu");

M.TITLE_LENGTH = strlen (M.TITLE_TEXT) ;

DISPLAY M TRANSPARENT VERTICAL

if (M.ENTREE_VALUE == 0)
break;
valuep = (char *) M.ENTREE_VALUE;
END_MENU

C-6 Sample Forms Programs

FC.CITY

FC.POPULATION;

END_FORM;

Sample Program 2

/* Look for state */

FOR S IN STATES WITH S.STATE = valuep

/* Put city information into subform */
FOR C IN CITIES WITH C.STATE = S.STATE
SORTED BY C.CITY
PUT_ITEM FC IN F.CITY_POP_LINE
strcpy (FC.CITY, C.CITY);
FC.POPULATION = C.POPULATION;
END_ITEM;
END_FOR;

/* Put state information into form */
strcpy (F.STATE, S.STATE);

strcpy (F.STATE_NAME, S.STATE_NAME) ;
strcpy (F.TAG, "Update populations if
needed") ;

/* Display current form and allow
populations to be updated */
DISPLAY F DISPLAYING STATE, STATE_NAME,
CITY_POP_LINE.CITY,
CITY_POP_LINE.POPULATION, TAG
ACCEPTING CITY_POP_LINE.POPULATION;

/* Perform modifications for any updated
* populations */
FOR_ITEM FC IN F.CITY_POP_LINE
if (FC.POPULATION.STATE ==
PYXIS_SOPT_USER_DATA)
FOR C IN CITIES WITH C.CITY =

AND C.STATE = F.STATE
MODIFY C USING
C.POPULATION =

END_MODIFY;
END_FOR;
END_TITEM;

END_FOR;

Sample Forms Programs Cc-7

Sample Program 2

/* Deallocate the entree values for the menu, except
the special EXIT entree. */

FOR_MENU (MENU_HANDLE state_menu_handle) M

FOR_ITEM E IN M

if (E.ENTREE_VALUE != 0)
free (E.ENTREE_VALUE) ;
END_ITEM
END_MENU

/* Make form go away */
DELETE_WINDOW;

/* Check to see whether or not to commit updates */

printf ("Do you want to commit the updates (Y/N): ");
answer = getchar();

if ((answer == 'Y’) || (answer == 'y'))
COMMIT

else
ROLLBACK;

/* Close down */
FINISH;
}

C-8 Sample Forms Programs

A

Apollo
fred implementation A-1
fred keyboard diagram A-10
atlas.gdb database B-1

B
Blob
using with forms 8-1

C

case_menu 7-10, 9-2
change 3-12
create_window 7-4

D

delete_window 7-5
display

forms 9-5
Dynamic menus 7-12

E

end_item 9-17

F

for_form 7-2,9-9

for_item 9-12

for_menu 9-14

Forms
adding database fields 3-9
adding external fields 3-7
adding text 3-6
attributes 7-6
changing text 3-11
creating a form 2-1
creating menus 7-10
creating windows 7-4
datatypes valid 2-3
default elements 2-3
defining static menus 7-10
deleting a window 7-5

deleting elements 1-8, 3-13
displaying 7-2

editing 3-1

editing a blob 8-1

editing fields in 2-5
elements in 1-2

exiting 3-15

field values limiting 3-12
fields on 2-3

formatting in QLI 5-3
horizontal 9-2, 9-7
introduction 1-1
invoking 1-7

invoking in QLI 6-3
keyboard maps A-5
menus 1-7,7-10
modifying data with 6-5
moving elements 3-4
navigating in 2-4

options for defining fields 3-8
overview 1-1

reformat 2-7

renaming 2-8

repeating groups 3-10
resizing 2-7

reversing 3-12

rolling back 1-8

sample application 7-13
sample programs C-1
saving 2-8, 3-14

saving to external file 2-9
selecting fields 3-4
setting attributes with GDML 7-6
size 2-7

starting 1-7

storing data using 6-5
tag line 2-3

terminating key 7-9
tutorial 5-2

using in programs 7-1
using subforms in GDML 7-13
using with GDML 7-1
using with QLI 6-1

Index- 1

using with SQL 7-1
valid field datatypes 2-3
vertical 9-2, 9-7

window 7-4

M

Menu 1-7,7-10

Mouse support on Apollo A-1

O

on_error 7-17

opaque 9-7

overriding 9-6

P

put_item
described 9-17

Pyxis

relation to forms 1-3

S

Sample forms programs C-1
set form 6-3
Static menus 7-10
store
using 6-5
Subforms
changing 4-4
characteristics 4-4
editing 4-1
exiting 4-6
GDML 7-13
region 4-4
selecting 4-3
size 4-5
sub_item 4-5
Sun
fred implementation A-4
fred keyboard diagrams A-8

\Y%
VMS

Index-2

fred keyboard diagrams A-6

W

Window
delete 7-5

